| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fveq2 | 
							⊢ ( ( 𝐴  ·ih  𝐵 )  =  0  →  ( ∗ ‘ ( 𝐴  ·ih  𝐵 ) )  =  ( ∗ ‘ 0 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							cj0 | 
							⊢ ( ∗ ‘ 0 )  =  0  | 
						
						
							| 3 | 
							
								1 2
							 | 
							eqtrdi | 
							⊢ ( ( 𝐴  ·ih  𝐵 )  =  0  →  ( ∗ ‘ ( 𝐴  ·ih  𝐵 ) )  =  0 )  | 
						
						
							| 4 | 
							
								
							 | 
							ax-his1 | 
							⊢ ( ( 𝐵  ∈   ℋ  ∧  𝐴  ∈   ℋ )  →  ( 𝐵  ·ih  𝐴 )  =  ( ∗ ‘ ( 𝐴  ·ih  𝐵 ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							ancoms | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( 𝐵  ·ih  𝐴 )  =  ( ∗ ‘ ( 𝐴  ·ih  𝐵 ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							eqeq1d | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( 𝐵  ·ih  𝐴 )  =  0  ↔  ( ∗ ‘ ( 𝐴  ·ih  𝐵 ) )  =  0 ) )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							imbitrrid | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( 𝐴  ·ih  𝐵 )  =  0  →  ( 𝐵  ·ih  𝐴 )  =  0 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							fveq2 | 
							⊢ ( ( 𝐵  ·ih  𝐴 )  =  0  →  ( ∗ ‘ ( 𝐵  ·ih  𝐴 ) )  =  ( ∗ ‘ 0 ) )  | 
						
						
							| 9 | 
							
								8 2
							 | 
							eqtrdi | 
							⊢ ( ( 𝐵  ·ih  𝐴 )  =  0  →  ( ∗ ‘ ( 𝐵  ·ih  𝐴 ) )  =  0 )  | 
						
						
							| 10 | 
							
								
							 | 
							ax-his1 | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( 𝐴  ·ih  𝐵 )  =  ( ∗ ‘ ( 𝐵  ·ih  𝐴 ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							eqeq1d | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( 𝐴  ·ih  𝐵 )  =  0  ↔  ( ∗ ‘ ( 𝐵  ·ih  𝐴 ) )  =  0 ) )  | 
						
						
							| 12 | 
							
								9 11
							 | 
							imbitrrid | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( 𝐵  ·ih  𝐴 )  =  0  →  ( 𝐴  ·ih  𝐵 )  =  0 ) )  | 
						
						
							| 13 | 
							
								7 12
							 | 
							impbid | 
							⊢ ( ( 𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( 𝐴  ·ih  𝐵 )  =  0  ↔  ( 𝐵  ·ih  𝐴 )  =  0 ) )  |