Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( ( 𝐴 ·ih 𝐵 ) = 0 → ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) = ( ∗ ‘ 0 ) ) |
2 |
|
cj0 |
⊢ ( ∗ ‘ 0 ) = 0 |
3 |
1 2
|
eqtrdi |
⊢ ( ( 𝐴 ·ih 𝐵 ) = 0 → ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) = 0 ) |
4 |
|
ax-his1 |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐵 ·ih 𝐴 ) = ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) ) |
5 |
4
|
ancoms |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐵 ·ih 𝐴 ) = ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) ) |
6 |
5
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐵 ·ih 𝐴 ) = 0 ↔ ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) = 0 ) ) |
7 |
3 6
|
syl5ibr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐵 ) = 0 → ( 𝐵 ·ih 𝐴 ) = 0 ) ) |
8 |
|
fveq2 |
⊢ ( ( 𝐵 ·ih 𝐴 ) = 0 → ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) = ( ∗ ‘ 0 ) ) |
9 |
8 2
|
eqtrdi |
⊢ ( ( 𝐵 ·ih 𝐴 ) = 0 → ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) = 0 ) |
10 |
|
ax-his1 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih 𝐵 ) = ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) ) |
11 |
10
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐵 ) = 0 ↔ ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) = 0 ) ) |
12 |
9 11
|
syl5ibr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐵 ·ih 𝐴 ) = 0 → ( 𝐴 ·ih 𝐵 ) = 0 ) ) |
13 |
7 12
|
impbid |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐵 ) = 0 ↔ ( 𝐵 ·ih 𝐴 ) = 0 ) ) |