| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ssrin | 
							⊢ ( 𝐴  ⊆  ( ⊥ ‘ 𝐵 )  →  ( 𝐴  ∩  𝐵 )  ⊆  ( ( ⊥ ‘ 𝐵 )  ∩  𝐵 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							incom | 
							⊢ ( ( ⊥ ‘ 𝐵 )  ∩  𝐵 )  =  ( 𝐵  ∩  ( ⊥ ‘ 𝐵 ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sseqtrdi | 
							⊢ ( 𝐴  ⊆  ( ⊥ ‘ 𝐵 )  →  ( 𝐴  ∩  𝐵 )  ⊆  ( 𝐵  ∩  ( ⊥ ‘ 𝐵 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							ocin | 
							⊢ ( 𝐵  ∈   Sℋ   →  ( 𝐵  ∩  ( ⊥ ‘ 𝐵 ) )  =  0ℋ )  | 
						
						
							| 5 | 
							
								4
							 | 
							sseq2d | 
							⊢ ( 𝐵  ∈   Sℋ   →  ( ( 𝐴  ∩  𝐵 )  ⊆  ( 𝐵  ∩  ( ⊥ ‘ 𝐵 ) )  ↔  ( 𝐴  ∩  𝐵 )  ⊆  0ℋ ) )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							imbitrid | 
							⊢ ( 𝐵  ∈   Sℋ   →  ( 𝐴  ⊆  ( ⊥ ‘ 𝐵 )  →  ( 𝐴  ∩  𝐵 )  ⊆  0ℋ ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( 𝐴  ⊆  ( ⊥ ‘ 𝐵 )  →  ( 𝐴  ∩  𝐵 )  ⊆  0ℋ ) )  | 
						
						
							| 8 | 
							
								
							 | 
							shincl | 
							⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( 𝐴  ∩  𝐵 )  ∈   Sℋ  )  | 
						
						
							| 9 | 
							
								
							 | 
							sh0le | 
							⊢ ( ( 𝐴  ∩  𝐵 )  ∈   Sℋ   →  0ℋ  ⊆  ( 𝐴  ∩  𝐵 ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syl | 
							⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  0ℋ  ⊆  ( 𝐴  ∩  𝐵 ) )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							jctird | 
							⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( 𝐴  ⊆  ( ⊥ ‘ 𝐵 )  →  ( ( 𝐴  ∩  𝐵 )  ⊆  0ℋ  ∧  0ℋ  ⊆  ( 𝐴  ∩  𝐵 ) ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eqss | 
							⊢ ( ( 𝐴  ∩  𝐵 )  =  0ℋ  ↔  ( ( 𝐴  ∩  𝐵 )  ⊆  0ℋ  ∧  0ℋ  ⊆  ( 𝐴  ∩  𝐵 ) ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							imbitrrdi | 
							⊢ ( ( 𝐴  ∈   Sℋ   ∧  𝐵  ∈   Sℋ  )  →  ( 𝐴  ⊆  ( ⊥ ‘ 𝐵 )  →  ( 𝐴  ∩  𝐵 )  =  0ℋ ) )  |