| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qrng.q |
⊢ 𝑄 = ( ℂfld ↾s ℚ ) |
| 2 |
|
qabsabv.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑄 ) |
| 3 |
|
padic.j |
⊢ 𝐽 = ( 𝑞 ∈ ℙ ↦ ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , ( 𝑞 ↑ - ( 𝑞 pCnt 𝑥 ) ) ) ) ) |
| 4 |
|
ostth.k |
⊢ 𝐾 = ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , 1 ) ) |
| 5 |
|
simpl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑛 ∈ ℕ ∧ 1 < ( 𝐹 ‘ 𝑛 ) ) ) → 𝐹 ∈ 𝐴 ) |
| 6 |
|
1re |
⊢ 1 ∈ ℝ |
| 7 |
6
|
ltnri |
⊢ ¬ 1 < 1 |
| 8 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 9 |
1
|
qrng1 |
⊢ 1 = ( 1r ‘ 𝑄 ) |
| 10 |
1
|
qrng0 |
⊢ 0 = ( 0g ‘ 𝑄 ) |
| 11 |
2 9 10
|
abv1z |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 𝐹 ‘ 1 ) = 1 ) |
| 12 |
8 11
|
mpan2 |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ‘ 1 ) = 1 ) |
| 13 |
12
|
breq2d |
⊢ ( 𝐹 ∈ 𝐴 → ( 1 < ( 𝐹 ‘ 1 ) ↔ 1 < 1 ) ) |
| 14 |
7 13
|
mtbiri |
⊢ ( 𝐹 ∈ 𝐴 → ¬ 1 < ( 𝐹 ‘ 1 ) ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑛 ∈ ℕ ∧ 1 < ( 𝐹 ‘ 𝑛 ) ) ) → ¬ 1 < ( 𝐹 ‘ 1 ) ) |
| 16 |
|
simprr |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑛 ∈ ℕ ∧ 1 < ( 𝐹 ‘ 𝑛 ) ) ) → 1 < ( 𝐹 ‘ 𝑛 ) ) |
| 17 |
|
fveq2 |
⊢ ( 𝑛 = 1 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 1 ) ) |
| 18 |
17
|
breq2d |
⊢ ( 𝑛 = 1 → ( 1 < ( 𝐹 ‘ 𝑛 ) ↔ 1 < ( 𝐹 ‘ 1 ) ) ) |
| 19 |
16 18
|
syl5ibcom |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑛 ∈ ℕ ∧ 1 < ( 𝐹 ‘ 𝑛 ) ) ) → ( 𝑛 = 1 → 1 < ( 𝐹 ‘ 1 ) ) ) |
| 20 |
15 19
|
mtod |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑛 ∈ ℕ ∧ 1 < ( 𝐹 ‘ 𝑛 ) ) ) → ¬ 𝑛 = 1 ) |
| 21 |
|
simprl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑛 ∈ ℕ ∧ 1 < ( 𝐹 ‘ 𝑛 ) ) ) → 𝑛 ∈ ℕ ) |
| 22 |
|
elnn1uz2 |
⊢ ( 𝑛 ∈ ℕ ↔ ( 𝑛 = 1 ∨ 𝑛 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 23 |
21 22
|
sylib |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑛 ∈ ℕ ∧ 1 < ( 𝐹 ‘ 𝑛 ) ) ) → ( 𝑛 = 1 ∨ 𝑛 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 24 |
23
|
ord |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑛 ∈ ℕ ∧ 1 < ( 𝐹 ‘ 𝑛 ) ) ) → ( ¬ 𝑛 = 1 → 𝑛 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 25 |
20 24
|
mpd |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑛 ∈ ℕ ∧ 1 < ( 𝐹 ‘ 𝑛 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 2 ) ) |
| 26 |
|
eqid |
⊢ ( ( log ‘ ( 𝐹 ‘ 𝑛 ) ) / ( log ‘ 𝑛 ) ) = ( ( log ‘ ( 𝐹 ‘ 𝑛 ) ) / ( log ‘ 𝑛 ) ) |
| 27 |
1 2 3 4 5 25 16 26
|
ostth2 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑛 ∈ ℕ ∧ 1 < ( 𝐹 ‘ 𝑛 ) ) ) → ∃ 𝑎 ∈ ( 0 (,] 1 ) 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) |
| 28 |
27
|
rexlimdvaa |
⊢ ( 𝐹 ∈ 𝐴 → ( ∃ 𝑛 ∈ ℕ 1 < ( 𝐹 ‘ 𝑛 ) → ∃ 𝑎 ∈ ( 0 (,] 1 ) 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) |
| 29 |
|
3mix2 |
⊢ ( ∃ 𝑎 ∈ ( 0 (,] 1 ) 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) → ( 𝐹 = 𝐾 ∨ ∃ 𝑎 ∈ ( 0 (,] 1 ) 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ∨ ∃ 𝑎 ∈ ℝ+ ∃ 𝑔 ∈ ran 𝐽 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) |
| 30 |
28 29
|
syl6 |
⊢ ( 𝐹 ∈ 𝐴 → ( ∃ 𝑛 ∈ ℕ 1 < ( 𝐹 ‘ 𝑛 ) → ( 𝐹 = 𝐾 ∨ ∃ 𝑎 ∈ ( 0 (,] 1 ) 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ∨ ∃ 𝑎 ∈ ℝ+ ∃ 𝑔 ∈ ran 𝐽 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) ) |
| 31 |
|
ralnex |
⊢ ( ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ↔ ¬ ∃ 𝑛 ∈ ℕ 1 < ( 𝐹 ‘ 𝑛 ) ) |
| 32 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → 𝐹 ∈ 𝐴 ) |
| 33 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ) |
| 34 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 35 |
34
|
breq2d |
⊢ ( 𝑛 = 𝑘 → ( 1 < ( 𝐹 ‘ 𝑛 ) ↔ 1 < ( 𝐹 ‘ 𝑘 ) ) ) |
| 36 |
35
|
notbid |
⊢ ( 𝑛 = 𝑘 → ( ¬ 1 < ( 𝐹 ‘ 𝑛 ) ↔ ¬ 1 < ( 𝐹 ‘ 𝑘 ) ) ) |
| 37 |
36
|
cbvralvw |
⊢ ( ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ↔ ∀ 𝑘 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑘 ) ) |
| 38 |
33 37
|
sylib |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ∀ 𝑘 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑘 ) ) |
| 39 |
|
simprl |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → 𝑝 ∈ ℙ ) |
| 40 |
|
simprr |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ( 𝐹 ‘ 𝑝 ) < 1 ) |
| 41 |
|
eqid |
⊢ - ( ( log ‘ ( 𝐹 ‘ 𝑝 ) ) / ( log ‘ 𝑝 ) ) = - ( ( log ‘ ( 𝐹 ‘ 𝑝 ) ) / ( log ‘ 𝑝 ) ) |
| 42 |
|
eqid |
⊢ if ( ( 𝐹 ‘ 𝑝 ) ≤ ( 𝐹 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑝 ) ) = if ( ( 𝐹 ‘ 𝑝 ) ≤ ( 𝐹 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑝 ) ) |
| 43 |
1 2 3 4 32 38 39 40 41 42
|
ostth3 |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ) ∧ ( 𝑝 ∈ ℙ ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ∃ 𝑎 ∈ ℝ+ 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) |
| 44 |
43
|
expr |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝐹 ‘ 𝑝 ) < 1 → ∃ 𝑎 ∈ ℝ+ 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) |
| 45 |
44
|
reximdva |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ) → ( ∃ 𝑝 ∈ ℙ ( 𝐹 ‘ 𝑝 ) < 1 → ∃ 𝑝 ∈ ℙ ∃ 𝑎 ∈ ℝ+ 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) |
| 46 |
1 2 3
|
padicabvf |
⊢ 𝐽 : ℙ ⟶ 𝐴 |
| 47 |
|
ffn |
⊢ ( 𝐽 : ℙ ⟶ 𝐴 → 𝐽 Fn ℙ ) |
| 48 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝐽 ‘ 𝑝 ) → ( 𝑔 ‘ 𝑦 ) = ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ) |
| 49 |
48
|
oveq1d |
⊢ ( 𝑔 = ( 𝐽 ‘ 𝑝 ) → ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) = ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) |
| 50 |
49
|
mpteq2dv |
⊢ ( 𝑔 = ( 𝐽 ‘ 𝑝 ) → ( 𝑦 ∈ ℚ ↦ ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) = ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) |
| 51 |
50
|
eqeq2d |
⊢ ( 𝑔 = ( 𝐽 ‘ 𝑝 ) → ( 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ↔ 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) |
| 52 |
51
|
rexrn |
⊢ ( 𝐽 Fn ℙ → ( ∃ 𝑔 ∈ ran 𝐽 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ↔ ∃ 𝑝 ∈ ℙ 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) |
| 53 |
46 47 52
|
mp2b |
⊢ ( ∃ 𝑔 ∈ ran 𝐽 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ↔ ∃ 𝑝 ∈ ℙ 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) |
| 54 |
53
|
rexbii |
⊢ ( ∃ 𝑎 ∈ ℝ+ ∃ 𝑔 ∈ ran 𝐽 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ↔ ∃ 𝑎 ∈ ℝ+ ∃ 𝑝 ∈ ℙ 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) |
| 55 |
|
rexcom |
⊢ ( ∃ 𝑎 ∈ ℝ+ ∃ 𝑝 ∈ ℙ 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑎 ∈ ℝ+ 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) |
| 56 |
54 55
|
bitri |
⊢ ( ∃ 𝑎 ∈ ℝ+ ∃ 𝑔 ∈ ran 𝐽 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑎 ∈ ℝ+ 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) |
| 57 |
|
3mix3 |
⊢ ( ∃ 𝑎 ∈ ℝ+ ∃ 𝑔 ∈ ran 𝐽 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) → ( 𝐹 = 𝐾 ∨ ∃ 𝑎 ∈ ( 0 (,] 1 ) 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ∨ ∃ 𝑎 ∈ ℝ+ ∃ 𝑔 ∈ ran 𝐽 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) |
| 58 |
56 57
|
sylbir |
⊢ ( ∃ 𝑝 ∈ ℙ ∃ 𝑎 ∈ ℝ+ 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) → ( 𝐹 = 𝐾 ∨ ∃ 𝑎 ∈ ( 0 (,] 1 ) 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ∨ ∃ 𝑎 ∈ ℝ+ ∃ 𝑔 ∈ ran 𝐽 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) |
| 59 |
45 58
|
syl6 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ) → ( ∃ 𝑝 ∈ ℙ ( 𝐹 ‘ 𝑝 ) < 1 → ( 𝐹 = 𝐾 ∨ ∃ 𝑎 ∈ ( 0 (,] 1 ) 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ∨ ∃ 𝑎 ∈ ℝ+ ∃ 𝑔 ∈ ran 𝐽 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) ) |
| 60 |
|
ralnex |
⊢ ( ∀ 𝑝 ∈ ℙ ¬ ( 𝐹 ‘ 𝑝 ) < 1 ↔ ¬ ∃ 𝑝 ∈ ℙ ( 𝐹 ‘ 𝑝 ) < 1 ) |
| 61 |
|
simpl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ∧ ∀ 𝑝 ∈ ℙ ¬ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → 𝐹 ∈ 𝐴 ) |
| 62 |
|
simprl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ∧ ∀ 𝑝 ∈ ℙ ¬ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ) |
| 63 |
62 37
|
sylib |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ∧ ∀ 𝑝 ∈ ℙ ¬ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ∀ 𝑘 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑘 ) ) |
| 64 |
|
simprr |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ∧ ∀ 𝑝 ∈ ℙ ¬ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ∀ 𝑝 ∈ ℙ ¬ ( 𝐹 ‘ 𝑝 ) < 1 ) |
| 65 |
|
fveq2 |
⊢ ( 𝑝 = 𝑘 → ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 66 |
65
|
breq1d |
⊢ ( 𝑝 = 𝑘 → ( ( 𝐹 ‘ 𝑝 ) < 1 ↔ ( 𝐹 ‘ 𝑘 ) < 1 ) ) |
| 67 |
66
|
notbid |
⊢ ( 𝑝 = 𝑘 → ( ¬ ( 𝐹 ‘ 𝑝 ) < 1 ↔ ¬ ( 𝐹 ‘ 𝑘 ) < 1 ) ) |
| 68 |
67
|
cbvralvw |
⊢ ( ∀ 𝑝 ∈ ℙ ¬ ( 𝐹 ‘ 𝑝 ) < 1 ↔ ∀ 𝑘 ∈ ℙ ¬ ( 𝐹 ‘ 𝑘 ) < 1 ) |
| 69 |
64 68
|
sylib |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ∧ ∀ 𝑝 ∈ ℙ ¬ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ∀ 𝑘 ∈ ℙ ¬ ( 𝐹 ‘ 𝑘 ) < 1 ) |
| 70 |
1 2 3 4 61 63 69
|
ostth1 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ∧ ∀ 𝑝 ∈ ℙ ¬ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → 𝐹 = 𝐾 ) |
| 71 |
70
|
3mix1d |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ∧ ∀ 𝑝 ∈ ℙ ¬ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ( 𝐹 = 𝐾 ∨ ∃ 𝑎 ∈ ( 0 (,] 1 ) 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ∨ ∃ 𝑎 ∈ ℝ+ ∃ 𝑔 ∈ ran 𝐽 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) |
| 72 |
71
|
expr |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ) → ( ∀ 𝑝 ∈ ℙ ¬ ( 𝐹 ‘ 𝑝 ) < 1 → ( 𝐹 = 𝐾 ∨ ∃ 𝑎 ∈ ( 0 (,] 1 ) 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ∨ ∃ 𝑎 ∈ ℝ+ ∃ 𝑔 ∈ ran 𝐽 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) ) |
| 73 |
60 72
|
biimtrrid |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ) → ( ¬ ∃ 𝑝 ∈ ℙ ( 𝐹 ‘ 𝑝 ) < 1 → ( 𝐹 = 𝐾 ∨ ∃ 𝑎 ∈ ( 0 (,] 1 ) 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ∨ ∃ 𝑎 ∈ ℝ+ ∃ 𝑔 ∈ ran 𝐽 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) ) |
| 74 |
59 73
|
pm2.61d |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ) → ( 𝐹 = 𝐾 ∨ ∃ 𝑎 ∈ ( 0 (,] 1 ) 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ∨ ∃ 𝑎 ∈ ℝ+ ∃ 𝑔 ∈ ran 𝐽 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) |
| 75 |
74
|
ex |
⊢ ( 𝐹 ∈ 𝐴 → ( ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) → ( 𝐹 = 𝐾 ∨ ∃ 𝑎 ∈ ( 0 (,] 1 ) 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ∨ ∃ 𝑎 ∈ ℝ+ ∃ 𝑔 ∈ ran 𝐽 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) ) |
| 76 |
31 75
|
biimtrrid |
⊢ ( 𝐹 ∈ 𝐴 → ( ¬ ∃ 𝑛 ∈ ℕ 1 < ( 𝐹 ‘ 𝑛 ) → ( 𝐹 = 𝐾 ∨ ∃ 𝑎 ∈ ( 0 (,] 1 ) 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ∨ ∃ 𝑎 ∈ ℝ+ ∃ 𝑔 ∈ ran 𝐽 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) ) |
| 77 |
30 76
|
pm2.61d |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 = 𝐾 ∨ ∃ 𝑎 ∈ ( 0 (,] 1 ) 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ∨ ∃ 𝑎 ∈ ℝ+ ∃ 𝑔 ∈ ran 𝐽 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) |
| 78 |
|
id |
⊢ ( 𝐹 = 𝐾 → 𝐹 = 𝐾 ) |
| 79 |
1
|
qdrng |
⊢ 𝑄 ∈ DivRing |
| 80 |
1
|
qrngbas |
⊢ ℚ = ( Base ‘ 𝑄 ) |
| 81 |
2 80 10 4
|
abvtriv |
⊢ ( 𝑄 ∈ DivRing → 𝐾 ∈ 𝐴 ) |
| 82 |
79 81
|
ax-mp |
⊢ 𝐾 ∈ 𝐴 |
| 83 |
78 82
|
eqeltrdi |
⊢ ( 𝐹 = 𝐾 → 𝐹 ∈ 𝐴 ) |
| 84 |
1 2
|
qabsabv |
⊢ ( abs ↾ ℚ ) ∈ 𝐴 |
| 85 |
|
fvres |
⊢ ( 𝑦 ∈ ℚ → ( ( abs ↾ ℚ ) ‘ 𝑦 ) = ( abs ‘ 𝑦 ) ) |
| 86 |
85
|
oveq1d |
⊢ ( 𝑦 ∈ ℚ → ( ( ( abs ↾ ℚ ) ‘ 𝑦 ) ↑𝑐 𝑎 ) = ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) |
| 87 |
86
|
mpteq2ia |
⊢ ( 𝑦 ∈ ℚ ↦ ( ( ( abs ↾ ℚ ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) |
| 88 |
87
|
eqcomi |
⊢ ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) = ( 𝑦 ∈ ℚ ↦ ( ( ( abs ↾ ℚ ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) |
| 89 |
2 80 88
|
abvcxp |
⊢ ( ( ( abs ↾ ℚ ) ∈ 𝐴 ∧ 𝑎 ∈ ( 0 (,] 1 ) ) → ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ∈ 𝐴 ) |
| 90 |
84 89
|
mpan |
⊢ ( 𝑎 ∈ ( 0 (,] 1 ) → ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ∈ 𝐴 ) |
| 91 |
|
eleq1 |
⊢ ( 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) → ( 𝐹 ∈ 𝐴 ↔ ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ∈ 𝐴 ) ) |
| 92 |
90 91
|
syl5ibrcom |
⊢ ( 𝑎 ∈ ( 0 (,] 1 ) → ( 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) → 𝐹 ∈ 𝐴 ) ) |
| 93 |
92
|
rexlimiv |
⊢ ( ∃ 𝑎 ∈ ( 0 (,] 1 ) 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) → 𝐹 ∈ 𝐴 ) |
| 94 |
1 2 3
|
padicabvcxp |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑎 ∈ ℝ+ ) → ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ∈ 𝐴 ) |
| 95 |
94
|
ancoms |
⊢ ( ( 𝑎 ∈ ℝ+ ∧ 𝑝 ∈ ℙ ) → ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ∈ 𝐴 ) |
| 96 |
|
eleq1 |
⊢ ( 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) → ( 𝐹 ∈ 𝐴 ↔ ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ∈ 𝐴 ) ) |
| 97 |
95 96
|
syl5ibrcom |
⊢ ( ( 𝑎 ∈ ℝ+ ∧ 𝑝 ∈ ℙ ) → ( 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) → 𝐹 ∈ 𝐴 ) ) |
| 98 |
97
|
rexlimivv |
⊢ ( ∃ 𝑎 ∈ ℝ+ ∃ 𝑝 ∈ ℙ 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑝 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) → 𝐹 ∈ 𝐴 ) |
| 99 |
54 98
|
sylbi |
⊢ ( ∃ 𝑎 ∈ ℝ+ ∃ 𝑔 ∈ ran 𝐽 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) → 𝐹 ∈ 𝐴 ) |
| 100 |
83 93 99
|
3jaoi |
⊢ ( ( 𝐹 = 𝐾 ∨ ∃ 𝑎 ∈ ( 0 (,] 1 ) 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ∨ ∃ 𝑎 ∈ ℝ+ ∃ 𝑔 ∈ ran 𝐽 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) → 𝐹 ∈ 𝐴 ) |
| 101 |
77 100
|
impbii |
⊢ ( 𝐹 ∈ 𝐴 ↔ ( 𝐹 = 𝐾 ∨ ∃ 𝑎 ∈ ( 0 (,] 1 ) 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ∨ ∃ 𝑎 ∈ ℝ+ ∃ 𝑔 ∈ ran 𝐽 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( 𝑔 ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) ) |