| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qrng.q |
⊢ 𝑄 = ( ℂfld ↾s ℚ ) |
| 2 |
|
qabsabv.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑄 ) |
| 3 |
|
padic.j |
⊢ 𝐽 = ( 𝑞 ∈ ℙ ↦ ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , ( 𝑞 ↑ - ( 𝑞 pCnt 𝑥 ) ) ) ) ) |
| 4 |
|
ostth.k |
⊢ 𝐾 = ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , 1 ) ) |
| 5 |
|
ostth.1 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐴 ) |
| 6 |
|
ostth2.2 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
| 7 |
|
ostth2.3 |
⊢ ( 𝜑 → 1 < ( 𝐹 ‘ 𝑁 ) ) |
| 8 |
|
ostth2.4 |
⊢ 𝑅 = ( ( log ‘ ( 𝐹 ‘ 𝑁 ) ) / ( log ‘ 𝑁 ) ) |
| 9 |
|
eluz2b2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) ) |
| 10 |
6 9
|
sylib |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) ) |
| 11 |
10
|
simpld |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 12 |
|
nnq |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℚ ) |
| 13 |
11 12
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℚ ) |
| 14 |
1
|
qrngbas |
⊢ ℚ = ( Base ‘ 𝑄 ) |
| 15 |
2 14
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑁 ∈ ℚ ) → ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) |
| 16 |
5 13 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) |
| 17 |
16 7
|
rplogcld |
⊢ ( 𝜑 → ( log ‘ ( 𝐹 ‘ 𝑁 ) ) ∈ ℝ+ ) |
| 18 |
11
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 19 |
10
|
simprd |
⊢ ( 𝜑 → 1 < 𝑁 ) |
| 20 |
18 19
|
rplogcld |
⊢ ( 𝜑 → ( log ‘ 𝑁 ) ∈ ℝ+ ) |
| 21 |
17 20
|
rpdivcld |
⊢ ( 𝜑 → ( ( log ‘ ( 𝐹 ‘ 𝑁 ) ) / ( log ‘ 𝑁 ) ) ∈ ℝ+ ) |
| 22 |
8 21
|
eqeltrid |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
| 23 |
22
|
rpred |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 24 |
22
|
rpgt0d |
⊢ ( 𝜑 → 0 < 𝑅 ) |
| 25 |
11
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 26 |
1 2
|
qabvle |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑁 ) ≤ 𝑁 ) |
| 27 |
5 25 26
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ≤ 𝑁 ) |
| 28 |
11
|
nnne0d |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
| 29 |
1
|
qrng0 |
⊢ 0 = ( 0g ‘ 𝑄 ) |
| 30 |
2 14 29
|
abvgt0 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) → 0 < ( 𝐹 ‘ 𝑁 ) ) |
| 31 |
5 13 28 30
|
syl3anc |
⊢ ( 𝜑 → 0 < ( 𝐹 ‘ 𝑁 ) ) |
| 32 |
16 31
|
elrpd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℝ+ ) |
| 33 |
32
|
reeflogd |
⊢ ( 𝜑 → ( exp ‘ ( log ‘ ( 𝐹 ‘ 𝑁 ) ) ) = ( 𝐹 ‘ 𝑁 ) ) |
| 34 |
11
|
nnrpd |
⊢ ( 𝜑 → 𝑁 ∈ ℝ+ ) |
| 35 |
34
|
reeflogd |
⊢ ( 𝜑 → ( exp ‘ ( log ‘ 𝑁 ) ) = 𝑁 ) |
| 36 |
27 33 35
|
3brtr4d |
⊢ ( 𝜑 → ( exp ‘ ( log ‘ ( 𝐹 ‘ 𝑁 ) ) ) ≤ ( exp ‘ ( log ‘ 𝑁 ) ) ) |
| 37 |
17
|
rpred |
⊢ ( 𝜑 → ( log ‘ ( 𝐹 ‘ 𝑁 ) ) ∈ ℝ ) |
| 38 |
34
|
relogcld |
⊢ ( 𝜑 → ( log ‘ 𝑁 ) ∈ ℝ ) |
| 39 |
|
efle |
⊢ ( ( ( log ‘ ( 𝐹 ‘ 𝑁 ) ) ∈ ℝ ∧ ( log ‘ 𝑁 ) ∈ ℝ ) → ( ( log ‘ ( 𝐹 ‘ 𝑁 ) ) ≤ ( log ‘ 𝑁 ) ↔ ( exp ‘ ( log ‘ ( 𝐹 ‘ 𝑁 ) ) ) ≤ ( exp ‘ ( log ‘ 𝑁 ) ) ) ) |
| 40 |
37 38 39
|
syl2anc |
⊢ ( 𝜑 → ( ( log ‘ ( 𝐹 ‘ 𝑁 ) ) ≤ ( log ‘ 𝑁 ) ↔ ( exp ‘ ( log ‘ ( 𝐹 ‘ 𝑁 ) ) ) ≤ ( exp ‘ ( log ‘ 𝑁 ) ) ) ) |
| 41 |
36 40
|
mpbird |
⊢ ( 𝜑 → ( log ‘ ( 𝐹 ‘ 𝑁 ) ) ≤ ( log ‘ 𝑁 ) ) |
| 42 |
20
|
rpcnd |
⊢ ( 𝜑 → ( log ‘ 𝑁 ) ∈ ℂ ) |
| 43 |
42
|
mulridd |
⊢ ( 𝜑 → ( ( log ‘ 𝑁 ) · 1 ) = ( log ‘ 𝑁 ) ) |
| 44 |
41 43
|
breqtrrd |
⊢ ( 𝜑 → ( log ‘ ( 𝐹 ‘ 𝑁 ) ) ≤ ( ( log ‘ 𝑁 ) · 1 ) ) |
| 45 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 46 |
37 45 20
|
ledivmuld |
⊢ ( 𝜑 → ( ( ( log ‘ ( 𝐹 ‘ 𝑁 ) ) / ( log ‘ 𝑁 ) ) ≤ 1 ↔ ( log ‘ ( 𝐹 ‘ 𝑁 ) ) ≤ ( ( log ‘ 𝑁 ) · 1 ) ) ) |
| 47 |
44 46
|
mpbird |
⊢ ( 𝜑 → ( ( log ‘ ( 𝐹 ‘ 𝑁 ) ) / ( log ‘ 𝑁 ) ) ≤ 1 ) |
| 48 |
8 47
|
eqbrtrid |
⊢ ( 𝜑 → 𝑅 ≤ 1 ) |
| 49 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 50 |
|
1re |
⊢ 1 ∈ ℝ |
| 51 |
|
elioc2 |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( 𝑅 ∈ ( 0 (,] 1 ) ↔ ( 𝑅 ∈ ℝ ∧ 0 < 𝑅 ∧ 𝑅 ≤ 1 ) ) ) |
| 52 |
49 50 51
|
mp2an |
⊢ ( 𝑅 ∈ ( 0 (,] 1 ) ↔ ( 𝑅 ∈ ℝ ∧ 0 < 𝑅 ∧ 𝑅 ≤ 1 ) ) |
| 53 |
23 24 48 52
|
syl3anbrc |
⊢ ( 𝜑 → 𝑅 ∈ ( 0 (,] 1 ) ) |
| 54 |
1 2
|
qabsabv |
⊢ ( abs ↾ ℚ ) ∈ 𝐴 |
| 55 |
|
fvres |
⊢ ( 𝑦 ∈ ℚ → ( ( abs ↾ ℚ ) ‘ 𝑦 ) = ( abs ‘ 𝑦 ) ) |
| 56 |
55
|
oveq1d |
⊢ ( 𝑦 ∈ ℚ → ( ( ( abs ↾ ℚ ) ‘ 𝑦 ) ↑𝑐 𝑅 ) = ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) |
| 57 |
56
|
mpteq2ia |
⊢ ( 𝑦 ∈ ℚ ↦ ( ( ( abs ↾ ℚ ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) |
| 58 |
57
|
eqcomi |
⊢ ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) = ( 𝑦 ∈ ℚ ↦ ( ( ( abs ↾ ℚ ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) |
| 59 |
2 14 58
|
abvcxp |
⊢ ( ( ( abs ↾ ℚ ) ∈ 𝐴 ∧ 𝑅 ∈ ( 0 (,] 1 ) ) → ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ∈ 𝐴 ) |
| 60 |
54 53 59
|
sylancr |
⊢ ( 𝜑 → ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ∈ 𝐴 ) |
| 61 |
|
eluzelz |
⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → 𝑧 ∈ ℤ ) |
| 62 |
|
zq |
⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℚ ) |
| 63 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( abs ‘ 𝑦 ) = ( abs ‘ 𝑧 ) ) |
| 64 |
63
|
oveq1d |
⊢ ( 𝑦 = 𝑧 → ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) = ( ( abs ‘ 𝑧 ) ↑𝑐 𝑅 ) ) |
| 65 |
|
eqid |
⊢ ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) |
| 66 |
|
ovex |
⊢ ( ( abs ‘ 𝑧 ) ↑𝑐 𝑅 ) ∈ V |
| 67 |
64 65 66
|
fvmpt |
⊢ ( 𝑧 ∈ ℚ → ( ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑧 ) = ( ( abs ‘ 𝑧 ) ↑𝑐 𝑅 ) ) |
| 68 |
61 62 67
|
3syl |
⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑧 ) = ( ( abs ‘ 𝑧 ) ↑𝑐 𝑅 ) ) |
| 69 |
68
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑧 ) = ( ( abs ‘ 𝑧 ) ↑𝑐 𝑅 ) ) |
| 70 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) |
| 71 |
|
eluz2b2 |
⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑧 ∈ ℕ ∧ 1 < 𝑧 ) ) |
| 72 |
70 71
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑧 ∈ ℕ ∧ 1 < 𝑧 ) ) |
| 73 |
72
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑧 ∈ ℕ ) |
| 74 |
73
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑧 ∈ ℝ ) |
| 75 |
73
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑧 ∈ ℕ0 ) |
| 76 |
75
|
nn0ge0d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → 0 ≤ 𝑧 ) |
| 77 |
74 76
|
absidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( abs ‘ 𝑧 ) = 𝑧 ) |
| 78 |
77
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( abs ‘ 𝑧 ) ↑𝑐 𝑅 ) = ( 𝑧 ↑𝑐 𝑅 ) ) |
| 79 |
74
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑧 ∈ ℂ ) |
| 80 |
73
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑧 ≠ 0 ) |
| 81 |
22
|
rpcnd |
⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
| 82 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑅 ∈ ℂ ) |
| 83 |
79 80 82
|
cxpefd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑧 ↑𝑐 𝑅 ) = ( exp ‘ ( 𝑅 · ( log ‘ 𝑧 ) ) ) ) |
| 84 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐹 ∈ 𝐴 ) |
| 85 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
| 86 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → 1 < ( 𝐹 ‘ 𝑁 ) ) |
| 87 |
|
eqid |
⊢ ( ( log ‘ ( 𝐹 ‘ 𝑧 ) ) / ( log ‘ 𝑧 ) ) = ( ( log ‘ ( 𝐹 ‘ 𝑧 ) ) / ( log ‘ 𝑧 ) ) |
| 88 |
|
eqid |
⊢ if ( ( 𝐹 ‘ 𝑧 ) ≤ 1 , 1 , ( 𝐹 ‘ 𝑧 ) ) = if ( ( 𝐹 ‘ 𝑧 ) ≤ 1 , 1 , ( 𝐹 ‘ 𝑧 ) ) |
| 89 |
|
eqid |
⊢ ( ( log ‘ 𝑁 ) / ( log ‘ 𝑧 ) ) = ( ( log ‘ 𝑁 ) / ( log ‘ 𝑧 ) ) |
| 90 |
1 2 3 4 84 85 86 8 70 87 88 89
|
ostth2lem4 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( 1 < ( 𝐹 ‘ 𝑧 ) ∧ 𝑅 ≤ ( ( log ‘ ( 𝐹 ‘ 𝑧 ) ) / ( log ‘ 𝑧 ) ) ) ) |
| 91 |
90
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑅 ≤ ( ( log ‘ ( 𝐹 ‘ 𝑧 ) ) / ( log ‘ 𝑧 ) ) ) |
| 92 |
90
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → 1 < ( 𝐹 ‘ 𝑧 ) ) |
| 93 |
|
eqid |
⊢ if ( ( 𝐹 ‘ 𝑁 ) ≤ 1 , 1 , ( 𝐹 ‘ 𝑁 ) ) = if ( ( 𝐹 ‘ 𝑁 ) ≤ 1 , 1 , ( 𝐹 ‘ 𝑁 ) ) |
| 94 |
|
eqid |
⊢ ( ( log ‘ 𝑧 ) / ( log ‘ 𝑁 ) ) = ( ( log ‘ 𝑧 ) / ( log ‘ 𝑁 ) ) |
| 95 |
1 2 3 4 84 70 92 87 85 8 93 94
|
ostth2lem4 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( 1 < ( 𝐹 ‘ 𝑁 ) ∧ ( ( log ‘ ( 𝐹 ‘ 𝑧 ) ) / ( log ‘ 𝑧 ) ) ≤ 𝑅 ) ) |
| 96 |
95
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( log ‘ ( 𝐹 ‘ 𝑧 ) ) / ( log ‘ 𝑧 ) ) ≤ 𝑅 ) |
| 97 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑅 ∈ ℝ ) |
| 98 |
61
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑧 ∈ ℤ ) |
| 99 |
98 62
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑧 ∈ ℚ ) |
| 100 |
2 14
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑧 ∈ ℚ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
| 101 |
84 99 100
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
| 102 |
2 14 29
|
abvgt0 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑧 ∈ ℚ ∧ 𝑧 ≠ 0 ) → 0 < ( 𝐹 ‘ 𝑧 ) ) |
| 103 |
84 99 80 102
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → 0 < ( 𝐹 ‘ 𝑧 ) ) |
| 104 |
101 103
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ+ ) |
| 105 |
104
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( log ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
| 106 |
73
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑧 ∈ ℝ+ ) |
| 107 |
106
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( log ‘ 𝑧 ) ∈ ℝ ) |
| 108 |
|
ef0 |
⊢ ( exp ‘ 0 ) = 1 |
| 109 |
72
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → 1 < 𝑧 ) |
| 110 |
106
|
reeflogd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( exp ‘ ( log ‘ 𝑧 ) ) = 𝑧 ) |
| 111 |
109 110
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → 1 < ( exp ‘ ( log ‘ 𝑧 ) ) ) |
| 112 |
108 111
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( exp ‘ 0 ) < ( exp ‘ ( log ‘ 𝑧 ) ) ) |
| 113 |
|
0re |
⊢ 0 ∈ ℝ |
| 114 |
|
eflt |
⊢ ( ( 0 ∈ ℝ ∧ ( log ‘ 𝑧 ) ∈ ℝ ) → ( 0 < ( log ‘ 𝑧 ) ↔ ( exp ‘ 0 ) < ( exp ‘ ( log ‘ 𝑧 ) ) ) ) |
| 115 |
113 107 114
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( 0 < ( log ‘ 𝑧 ) ↔ ( exp ‘ 0 ) < ( exp ‘ ( log ‘ 𝑧 ) ) ) ) |
| 116 |
112 115
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → 0 < ( log ‘ 𝑧 ) ) |
| 117 |
116
|
gt0ne0d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( log ‘ 𝑧 ) ≠ 0 ) |
| 118 |
105 107 117
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( log ‘ ( 𝐹 ‘ 𝑧 ) ) / ( log ‘ 𝑧 ) ) ∈ ℝ ) |
| 119 |
97 118
|
letri3d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑅 = ( ( log ‘ ( 𝐹 ‘ 𝑧 ) ) / ( log ‘ 𝑧 ) ) ↔ ( 𝑅 ≤ ( ( log ‘ ( 𝐹 ‘ 𝑧 ) ) / ( log ‘ 𝑧 ) ) ∧ ( ( log ‘ ( 𝐹 ‘ 𝑧 ) ) / ( log ‘ 𝑧 ) ) ≤ 𝑅 ) ) ) |
| 120 |
91 96 119
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑅 = ( ( log ‘ ( 𝐹 ‘ 𝑧 ) ) / ( log ‘ 𝑧 ) ) ) |
| 121 |
120
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑅 · ( log ‘ 𝑧 ) ) = ( ( ( log ‘ ( 𝐹 ‘ 𝑧 ) ) / ( log ‘ 𝑧 ) ) · ( log ‘ 𝑧 ) ) ) |
| 122 |
105
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( log ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ) |
| 123 |
107
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( log ‘ 𝑧 ) ∈ ℂ ) |
| 124 |
122 123 117
|
divcan1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ( log ‘ ( 𝐹 ‘ 𝑧 ) ) / ( log ‘ 𝑧 ) ) · ( log ‘ 𝑧 ) ) = ( log ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 125 |
121 124
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑅 · ( log ‘ 𝑧 ) ) = ( log ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 126 |
125
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( exp ‘ ( 𝑅 · ( log ‘ 𝑧 ) ) ) = ( exp ‘ ( log ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 127 |
104
|
reeflogd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( exp ‘ ( log ‘ ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝐹 ‘ 𝑧 ) ) |
| 128 |
83 126 127
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑧 ↑𝑐 𝑅 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 129 |
69 78 128
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐹 ‘ 𝑧 ) = ( ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑧 ) ) |
| 130 |
1 2 5 60 129
|
ostthlem1 |
⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ) |
| 131 |
|
oveq2 |
⊢ ( 𝑎 = 𝑅 → ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) = ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) |
| 132 |
131
|
mpteq2dv |
⊢ ( 𝑎 = 𝑅 → ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ) |
| 133 |
132
|
rspceeqv |
⊢ ( ( 𝑅 ∈ ( 0 (,] 1 ) ∧ 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ) → ∃ 𝑎 ∈ ( 0 (,] 1 ) 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) |
| 134 |
53 130 133
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑎 ∈ ( 0 (,] 1 ) 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( abs ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) |