| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qrng.q |
⊢ 𝑄 = ( ℂfld ↾s ℚ ) |
| 2 |
|
qabsabv.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑄 ) |
| 3 |
|
padic.j |
⊢ 𝐽 = ( 𝑞 ∈ ℙ ↦ ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , ( 𝑞 ↑ - ( 𝑞 pCnt 𝑥 ) ) ) ) ) |
| 4 |
|
ostth.k |
⊢ 𝐾 = ( 𝑥 ∈ ℚ ↦ if ( 𝑥 = 0 , 0 , 1 ) ) |
| 5 |
|
ostth.1 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐴 ) |
| 6 |
|
ostth3.2 |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ) |
| 7 |
|
ostth3.3 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 8 |
|
ostth3.4 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) < 1 ) |
| 9 |
|
ostth3.5 |
⊢ 𝑅 = - ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) |
| 10 |
|
ostth3.6 |
⊢ 𝑆 = if ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑃 ) ) |
| 11 |
|
prmuz2 |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 12 |
7 11
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 13 |
|
eluz2b2 |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑃 ∈ ℕ ∧ 1 < 𝑃 ) ) |
| 14 |
12 13
|
sylib |
⊢ ( 𝜑 → ( 𝑃 ∈ ℕ ∧ 1 < 𝑃 ) ) |
| 15 |
14
|
simpld |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 16 |
|
nnq |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℚ ) |
| 17 |
15 16
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℚ ) |
| 18 |
1
|
qrngbas |
⊢ ℚ = ( Base ‘ 𝑄 ) |
| 19 |
2 18
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑃 ∈ ℚ ) → ( 𝐹 ‘ 𝑃 ) ∈ ℝ ) |
| 20 |
5 17 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) ∈ ℝ ) |
| 21 |
15
|
nnne0d |
⊢ ( 𝜑 → 𝑃 ≠ 0 ) |
| 22 |
1
|
qrng0 |
⊢ 0 = ( 0g ‘ 𝑄 ) |
| 23 |
2 18 22
|
abvgt0 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑃 ∈ ℚ ∧ 𝑃 ≠ 0 ) → 0 < ( 𝐹 ‘ 𝑃 ) ) |
| 24 |
5 17 21 23
|
syl3anc |
⊢ ( 𝜑 → 0 < ( 𝐹 ‘ 𝑃 ) ) |
| 25 |
20 24
|
elrpd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) ∈ ℝ+ ) |
| 26 |
25
|
relogcld |
⊢ ( 𝜑 → ( log ‘ ( 𝐹 ‘ 𝑃 ) ) ∈ ℝ ) |
| 27 |
15
|
nnred |
⊢ ( 𝜑 → 𝑃 ∈ ℝ ) |
| 28 |
14
|
simprd |
⊢ ( 𝜑 → 1 < 𝑃 ) |
| 29 |
27 28
|
rplogcld |
⊢ ( 𝜑 → ( log ‘ 𝑃 ) ∈ ℝ+ ) |
| 30 |
26 29
|
rerpdivcld |
⊢ ( 𝜑 → ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) ∈ ℝ ) |
| 31 |
30
|
renegcld |
⊢ ( 𝜑 → - ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) ∈ ℝ ) |
| 32 |
9 31
|
eqeltrid |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 33 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 34 |
|
logltb |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℝ+ ∧ 1 ∈ ℝ+ ) → ( ( 𝐹 ‘ 𝑃 ) < 1 ↔ ( log ‘ ( 𝐹 ‘ 𝑃 ) ) < ( log ‘ 1 ) ) ) |
| 35 |
25 33 34
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑃 ) < 1 ↔ ( log ‘ ( 𝐹 ‘ 𝑃 ) ) < ( log ‘ 1 ) ) ) |
| 36 |
8 35
|
mpbid |
⊢ ( 𝜑 → ( log ‘ ( 𝐹 ‘ 𝑃 ) ) < ( log ‘ 1 ) ) |
| 37 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
| 38 |
36 37
|
breqtrdi |
⊢ ( 𝜑 → ( log ‘ ( 𝐹 ‘ 𝑃 ) ) < 0 ) |
| 39 |
29
|
rpcnd |
⊢ ( 𝜑 → ( log ‘ 𝑃 ) ∈ ℂ ) |
| 40 |
39
|
mul01d |
⊢ ( 𝜑 → ( ( log ‘ 𝑃 ) · 0 ) = 0 ) |
| 41 |
38 40
|
breqtrrd |
⊢ ( 𝜑 → ( log ‘ ( 𝐹 ‘ 𝑃 ) ) < ( ( log ‘ 𝑃 ) · 0 ) ) |
| 42 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 43 |
26 42 29
|
ltdivmuld |
⊢ ( 𝜑 → ( ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) < 0 ↔ ( log ‘ ( 𝐹 ‘ 𝑃 ) ) < ( ( log ‘ 𝑃 ) · 0 ) ) ) |
| 44 |
41 43
|
mpbird |
⊢ ( 𝜑 → ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) < 0 ) |
| 45 |
30
|
lt0neg1d |
⊢ ( 𝜑 → ( ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) < 0 ↔ 0 < - ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) ) ) |
| 46 |
44 45
|
mpbid |
⊢ ( 𝜑 → 0 < - ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) ) |
| 47 |
46 9
|
breqtrrdi |
⊢ ( 𝜑 → 0 < 𝑅 ) |
| 48 |
32 47
|
elrpd |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
| 49 |
1 2 3
|
padicabvcxp |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+ ) → ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ∈ 𝐴 ) |
| 50 |
7 48 49
|
syl2anc |
⊢ ( 𝜑 → ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ∈ 𝐴 ) |
| 51 |
|
fveq2 |
⊢ ( 𝑦 = 𝑃 → ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) = ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑃 ) ) |
| 52 |
51
|
oveq1d |
⊢ ( 𝑦 = 𝑃 → ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) = ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑃 ) ↑𝑐 𝑅 ) ) |
| 53 |
|
eqid |
⊢ ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) = ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) |
| 54 |
|
ovex |
⊢ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑃 ) ↑𝑐 𝑅 ) ∈ V |
| 55 |
52 53 54
|
fvmpt |
⊢ ( 𝑃 ∈ ℚ → ( ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑃 ) = ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑃 ) ↑𝑐 𝑅 ) ) |
| 56 |
17 55
|
syl |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑃 ) = ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑃 ) ↑𝑐 𝑅 ) ) |
| 57 |
3
|
padicval |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 ∈ ℚ ) → ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑃 ) = if ( 𝑃 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑃 ) ) ) ) |
| 58 |
7 17 57
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑃 ) = if ( 𝑃 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑃 ) ) ) ) |
| 59 |
21
|
neneqd |
⊢ ( 𝜑 → ¬ 𝑃 = 0 ) |
| 60 |
59
|
iffalsed |
⊢ ( 𝜑 → if ( 𝑃 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑃 ) ) ) = ( 𝑃 ↑ - ( 𝑃 pCnt 𝑃 ) ) ) |
| 61 |
15
|
nncnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 62 |
61
|
exp1d |
⊢ ( 𝜑 → ( 𝑃 ↑ 1 ) = 𝑃 ) |
| 63 |
62
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 pCnt ( 𝑃 ↑ 1 ) ) = ( 𝑃 pCnt 𝑃 ) ) |
| 64 |
|
1z |
⊢ 1 ∈ ℤ |
| 65 |
|
pcid |
⊢ ( ( 𝑃 ∈ ℙ ∧ 1 ∈ ℤ ) → ( 𝑃 pCnt ( 𝑃 ↑ 1 ) ) = 1 ) |
| 66 |
7 64 65
|
sylancl |
⊢ ( 𝜑 → ( 𝑃 pCnt ( 𝑃 ↑ 1 ) ) = 1 ) |
| 67 |
63 66
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝑃 ) = 1 ) |
| 68 |
67
|
negeqd |
⊢ ( 𝜑 → - ( 𝑃 pCnt 𝑃 ) = - 1 ) |
| 69 |
68
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 ↑ - ( 𝑃 pCnt 𝑃 ) ) = ( 𝑃 ↑ - 1 ) ) |
| 70 |
|
neg1z |
⊢ - 1 ∈ ℤ |
| 71 |
70
|
a1i |
⊢ ( 𝜑 → - 1 ∈ ℤ ) |
| 72 |
61 21 71
|
cxpexpzd |
⊢ ( 𝜑 → ( 𝑃 ↑𝑐 - 1 ) = ( 𝑃 ↑ - 1 ) ) |
| 73 |
69 72
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑃 ↑ - ( 𝑃 pCnt 𝑃 ) ) = ( 𝑃 ↑𝑐 - 1 ) ) |
| 74 |
58 60 73
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑃 ) = ( 𝑃 ↑𝑐 - 1 ) ) |
| 75 |
74
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑃 ) ↑𝑐 𝑅 ) = ( ( 𝑃 ↑𝑐 - 1 ) ↑𝑐 𝑅 ) ) |
| 76 |
32
|
recnd |
⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
| 77 |
76
|
mulm1d |
⊢ ( 𝜑 → ( - 1 · 𝑅 ) = - 𝑅 ) |
| 78 |
9
|
negeqi |
⊢ - 𝑅 = - - ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) |
| 79 |
30
|
recnd |
⊢ ( 𝜑 → ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) ∈ ℂ ) |
| 80 |
79
|
negnegd |
⊢ ( 𝜑 → - - ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) = ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) ) |
| 81 |
78 80
|
eqtrid |
⊢ ( 𝜑 → - 𝑅 = ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) ) |
| 82 |
77 81
|
eqtrd |
⊢ ( 𝜑 → ( - 1 · 𝑅 ) = ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) ) |
| 83 |
82
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 ↑𝑐 ( - 1 · 𝑅 ) ) = ( 𝑃 ↑𝑐 ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) ) ) |
| 84 |
15
|
nnrpd |
⊢ ( 𝜑 → 𝑃 ∈ ℝ+ ) |
| 85 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
| 86 |
85
|
a1i |
⊢ ( 𝜑 → - 1 ∈ ℝ ) |
| 87 |
84 86 76
|
cxpmuld |
⊢ ( 𝜑 → ( 𝑃 ↑𝑐 ( - 1 · 𝑅 ) ) = ( ( 𝑃 ↑𝑐 - 1 ) ↑𝑐 𝑅 ) ) |
| 88 |
61 21 79
|
cxpefd |
⊢ ( 𝜑 → ( 𝑃 ↑𝑐 ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) ) = ( exp ‘ ( ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) · ( log ‘ 𝑃 ) ) ) ) |
| 89 |
26
|
recnd |
⊢ ( 𝜑 → ( log ‘ ( 𝐹 ‘ 𝑃 ) ) ∈ ℂ ) |
| 90 |
29
|
rpne0d |
⊢ ( 𝜑 → ( log ‘ 𝑃 ) ≠ 0 ) |
| 91 |
89 39 90
|
divcan1d |
⊢ ( 𝜑 → ( ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) · ( log ‘ 𝑃 ) ) = ( log ‘ ( 𝐹 ‘ 𝑃 ) ) ) |
| 92 |
91
|
fveq2d |
⊢ ( 𝜑 → ( exp ‘ ( ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) · ( log ‘ 𝑃 ) ) ) = ( exp ‘ ( log ‘ ( 𝐹 ‘ 𝑃 ) ) ) ) |
| 93 |
25
|
reeflogd |
⊢ ( 𝜑 → ( exp ‘ ( log ‘ ( 𝐹 ‘ 𝑃 ) ) ) = ( 𝐹 ‘ 𝑃 ) ) |
| 94 |
88 92 93
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑃 ↑𝑐 ( ( log ‘ ( 𝐹 ‘ 𝑃 ) ) / ( log ‘ 𝑃 ) ) ) = ( 𝐹 ‘ 𝑃 ) ) |
| 95 |
83 87 94
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑃 ↑𝑐 - 1 ) ↑𝑐 𝑅 ) = ( 𝐹 ‘ 𝑃 ) ) |
| 96 |
56 75 95
|
3eqtrrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑃 ) ) |
| 97 |
|
fveq2 |
⊢ ( 𝑃 = 𝑝 → ( 𝐹 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑝 ) ) |
| 98 |
|
fveq2 |
⊢ ( 𝑃 = 𝑝 → ( ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑃 ) = ( ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑝 ) ) |
| 99 |
97 98
|
eqeq12d |
⊢ ( 𝑃 = 𝑝 → ( ( 𝐹 ‘ 𝑃 ) = ( ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑃 ) ↔ ( 𝐹 ‘ 𝑝 ) = ( ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑝 ) ) ) |
| 100 |
96 99
|
syl5ibcom |
⊢ ( 𝜑 → ( 𝑃 = 𝑝 → ( 𝐹 ‘ 𝑝 ) = ( ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑝 ) ) ) |
| 101 |
100
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑃 = 𝑝 → ( 𝐹 ‘ 𝑝 ) = ( ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑝 ) ) ) |
| 102 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
| 103 |
102
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → 𝑝 ∈ ℕ ) |
| 104 |
|
nnq |
⊢ ( 𝑝 ∈ ℕ → 𝑝 ∈ ℚ ) |
| 105 |
103 104
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → 𝑝 ∈ ℚ ) |
| 106 |
|
fveq2 |
⊢ ( 𝑦 = 𝑝 → ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) = ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 ) ) |
| 107 |
106
|
oveq1d |
⊢ ( 𝑦 = 𝑝 → ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) = ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 ) ↑𝑐 𝑅 ) ) |
| 108 |
|
ovex |
⊢ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 ) ↑𝑐 𝑅 ) ∈ V |
| 109 |
107 53 108
|
fvmpt |
⊢ ( 𝑝 ∈ ℚ → ( ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑝 ) = ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 ) ↑𝑐 𝑅 ) ) |
| 110 |
105 109
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑝 ) = ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 ) ↑𝑐 𝑅 ) ) |
| 111 |
76
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → 𝑅 ∈ ℂ ) |
| 112 |
111
|
1cxpd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( 1 ↑𝑐 𝑅 ) = 1 ) |
| 113 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → 𝑃 ∈ ℙ ) |
| 114 |
3
|
padicval |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑝 ∈ ℚ ) → ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 ) = if ( 𝑝 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑝 ) ) ) ) |
| 115 |
113 105 114
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 ) = if ( 𝑝 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑝 ) ) ) ) |
| 116 |
103
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → 𝑝 ≠ 0 ) |
| 117 |
116
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ¬ 𝑝 = 0 ) |
| 118 |
117
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → if ( 𝑝 = 0 , 0 , ( 𝑃 ↑ - ( 𝑃 pCnt 𝑝 ) ) ) = ( 𝑃 ↑ - ( 𝑃 pCnt 𝑝 ) ) ) |
| 119 |
|
pceq0 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑝 ∈ ℕ ) → ( ( 𝑃 pCnt 𝑝 ) = 0 ↔ ¬ 𝑃 ∥ 𝑝 ) ) |
| 120 |
7 102 119
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( 𝑃 pCnt 𝑝 ) = 0 ↔ ¬ 𝑃 ∥ 𝑝 ) ) |
| 121 |
|
dvdsprm |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑃 ∥ 𝑝 ↔ 𝑃 = 𝑝 ) ) |
| 122 |
12 121
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑃 ∥ 𝑝 ↔ 𝑃 = 𝑝 ) ) |
| 123 |
122
|
necon3bbid |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ¬ 𝑃 ∥ 𝑝 ↔ 𝑃 ≠ 𝑝 ) ) |
| 124 |
120 123
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( 𝑃 pCnt 𝑝 ) = 0 ↔ 𝑃 ≠ 𝑝 ) ) |
| 125 |
124
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( 𝑃 pCnt 𝑝 ) = 0 ) |
| 126 |
125
|
negeqd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → - ( 𝑃 pCnt 𝑝 ) = - 0 ) |
| 127 |
|
neg0 |
⊢ - 0 = 0 |
| 128 |
126 127
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → - ( 𝑃 pCnt 𝑝 ) = 0 ) |
| 129 |
128
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( 𝑃 ↑ - ( 𝑃 pCnt 𝑝 ) ) = ( 𝑃 ↑ 0 ) ) |
| 130 |
61
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → 𝑃 ∈ ℂ ) |
| 131 |
130
|
exp0d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( 𝑃 ↑ 0 ) = 1 ) |
| 132 |
129 131
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( 𝑃 ↑ - ( 𝑃 pCnt 𝑝 ) ) = 1 ) |
| 133 |
115 118 132
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 ) = 1 ) |
| 134 |
133
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 ) ↑𝑐 𝑅 ) = ( 1 ↑𝑐 𝑅 ) ) |
| 135 |
|
2re |
⊢ 2 ∈ ℝ |
| 136 |
135
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → 2 ∈ ℝ ) |
| 137 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → 𝐹 ∈ 𝐴 ) |
| 138 |
2 18
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑝 ∈ ℚ ) → ( 𝐹 ‘ 𝑝 ) ∈ ℝ ) |
| 139 |
137 105 138
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( 𝐹 ‘ 𝑝 ) ∈ ℝ ) |
| 140 |
2 18 22
|
abvgt0 |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑝 ∈ ℚ ∧ 𝑝 ≠ 0 ) → 0 < ( 𝐹 ‘ 𝑝 ) ) |
| 141 |
137 105 116 140
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → 0 < ( 𝐹 ‘ 𝑝 ) ) |
| 142 |
139 141
|
elrpd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( 𝐹 ‘ 𝑝 ) ∈ ℝ+ ) |
| 143 |
142
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ( 𝐹 ‘ 𝑝 ) ∈ ℝ+ ) |
| 144 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ( 𝐹 ‘ 𝑃 ) ∈ ℝ+ ) |
| 145 |
143 144
|
ifcld |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → if ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑃 ) ) ∈ ℝ+ ) |
| 146 |
10 145
|
eqeltrid |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → 𝑆 ∈ ℝ+ ) |
| 147 |
146
|
rprecred |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ( 1 / 𝑆 ) ∈ ℝ ) |
| 148 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ( 𝐹 ‘ 𝑝 ) < 1 ) |
| 149 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ( 𝐹 ‘ 𝑃 ) < 1 ) |
| 150 |
|
breq1 |
⊢ ( ( 𝐹 ‘ 𝑝 ) = if ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑃 ) ) → ( ( 𝐹 ‘ 𝑝 ) < 1 ↔ if ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑃 ) ) < 1 ) ) |
| 151 |
|
breq1 |
⊢ ( ( 𝐹 ‘ 𝑃 ) = if ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑃 ) ) → ( ( 𝐹 ‘ 𝑃 ) < 1 ↔ if ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑃 ) ) < 1 ) ) |
| 152 |
150 151
|
ifboth |
⊢ ( ( ( 𝐹 ‘ 𝑝 ) < 1 ∧ ( 𝐹 ‘ 𝑃 ) < 1 ) → if ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑃 ) ) < 1 ) |
| 153 |
148 149 152
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → if ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑃 ) ) < 1 ) |
| 154 |
10 153
|
eqbrtrid |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → 𝑆 < 1 ) |
| 155 |
146
|
reclt1d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ( 𝑆 < 1 ↔ 1 < ( 1 / 𝑆 ) ) ) |
| 156 |
154 155
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → 1 < ( 1 / 𝑆 ) ) |
| 157 |
|
expnbnd |
⊢ ( ( 2 ∈ ℝ ∧ ( 1 / 𝑆 ) ∈ ℝ ∧ 1 < ( 1 / 𝑆 ) ) → ∃ 𝑘 ∈ ℕ 2 < ( ( 1 / 𝑆 ) ↑ 𝑘 ) ) |
| 158 |
136 147 156 157
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ∃ 𝑘 ∈ ℕ 2 < ( ( 1 / 𝑆 ) ↑ 𝑘 ) ) |
| 159 |
146
|
rpcnd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → 𝑆 ∈ ℂ ) |
| 160 |
159
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → 𝑆 ∈ ℂ ) |
| 161 |
146
|
rpne0d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → 𝑆 ≠ 0 ) |
| 162 |
161
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → 𝑆 ≠ 0 ) |
| 163 |
|
nnz |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) |
| 164 |
163
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℤ ) |
| 165 |
160 162 164
|
exprecd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝑆 ) ↑ 𝑘 ) = ( 1 / ( 𝑆 ↑ 𝑘 ) ) ) |
| 166 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → 𝐹 ∈ 𝐴 ) |
| 167 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 168 |
1
|
qrng1 |
⊢ 1 = ( 1r ‘ 𝑄 ) |
| 169 |
2 168 22
|
abv1z |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 𝐹 ‘ 1 ) = 1 ) |
| 170 |
166 167 169
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 1 ) = 1 ) |
| 171 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → 𝑃 ∈ ℕ ) |
| 172 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
| 173 |
|
nnexpcl |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑘 ) ∈ ℕ ) |
| 174 |
171 172 173
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ↑ 𝑘 ) ∈ ℕ ) |
| 175 |
174
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ↑ 𝑘 ) ∈ ℤ ) |
| 176 |
102
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → 𝑝 ∈ ℕ ) |
| 177 |
|
nnexpcl |
⊢ ( ( 𝑝 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑝 ↑ 𝑘 ) ∈ ℕ ) |
| 178 |
176 172 177
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑝 ↑ 𝑘 ) ∈ ℕ ) |
| 179 |
178
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑝 ↑ 𝑘 ) ∈ ℤ ) |
| 180 |
|
bezout |
⊢ ( ( ( 𝑃 ↑ 𝑘 ) ∈ ℤ ∧ ( 𝑝 ↑ 𝑘 ) ∈ ℤ ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( ( 𝑃 ↑ 𝑘 ) gcd ( 𝑝 ↑ 𝑘 ) ) = ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) |
| 181 |
175 179 180
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( ( 𝑃 ↑ 𝑘 ) gcd ( 𝑝 ↑ 𝑘 ) ) = ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) |
| 182 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → 𝑃 ≠ 𝑝 ) |
| 183 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → 𝑃 ∈ ℙ ) |
| 184 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → 𝑝 ∈ ℙ ) |
| 185 |
|
prmrp |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑝 ∈ ℙ ) → ( ( 𝑃 gcd 𝑝 ) = 1 ↔ 𝑃 ≠ 𝑝 ) ) |
| 186 |
183 184 185
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ( ( 𝑃 gcd 𝑝 ) = 1 ↔ 𝑃 ≠ 𝑝 ) ) |
| 187 |
182 186
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ( 𝑃 gcd 𝑝 ) = 1 ) |
| 188 |
187
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑃 gcd 𝑝 ) = 1 ) |
| 189 |
171
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → 𝑃 ∈ ℕ ) |
| 190 |
176
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → 𝑝 ∈ ℕ ) |
| 191 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
| 192 |
|
rppwr |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑝 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑃 gcd 𝑝 ) = 1 → ( ( 𝑃 ↑ 𝑘 ) gcd ( 𝑝 ↑ 𝑘 ) ) = 1 ) ) |
| 193 |
189 190 191 192
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑃 gcd 𝑝 ) = 1 → ( ( 𝑃 ↑ 𝑘 ) gcd ( 𝑝 ↑ 𝑘 ) ) = 1 ) ) |
| 194 |
188 193
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑃 ↑ 𝑘 ) gcd ( 𝑝 ↑ 𝑘 ) ) = 1 ) |
| 195 |
194
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝑃 ↑ 𝑘 ) gcd ( 𝑝 ↑ 𝑘 ) ) = 1 ) |
| 196 |
195
|
eqeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( ( 𝑃 ↑ 𝑘 ) gcd ( 𝑝 ↑ 𝑘 ) ) = ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ↔ 1 = ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) ) |
| 197 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 𝐹 ∈ 𝐴 ) |
| 198 |
174
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝑃 ↑ 𝑘 ) ∈ ℕ ) |
| 199 |
|
nnq |
⊢ ( ( 𝑃 ↑ 𝑘 ) ∈ ℕ → ( 𝑃 ↑ 𝑘 ) ∈ ℚ ) |
| 200 |
198 199
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝑃 ↑ 𝑘 ) ∈ ℚ ) |
| 201 |
|
simprrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 𝑎 ∈ ℤ ) |
| 202 |
|
zq |
⊢ ( 𝑎 ∈ ℤ → 𝑎 ∈ ℚ ) |
| 203 |
201 202
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 𝑎 ∈ ℚ ) |
| 204 |
|
qmulcl |
⊢ ( ( ( 𝑃 ↑ 𝑘 ) ∈ ℚ ∧ 𝑎 ∈ ℚ ) → ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ∈ ℚ ) |
| 205 |
200 203 204
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ∈ ℚ ) |
| 206 |
178
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝑝 ↑ 𝑘 ) ∈ ℕ ) |
| 207 |
|
nnq |
⊢ ( ( 𝑝 ↑ 𝑘 ) ∈ ℕ → ( 𝑝 ↑ 𝑘 ) ∈ ℚ ) |
| 208 |
206 207
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝑝 ↑ 𝑘 ) ∈ ℚ ) |
| 209 |
|
simprrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 𝑏 ∈ ℤ ) |
| 210 |
|
zq |
⊢ ( 𝑏 ∈ ℤ → 𝑏 ∈ ℚ ) |
| 211 |
209 210
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 𝑏 ∈ ℚ ) |
| 212 |
|
qmulcl |
⊢ ( ( ( 𝑝 ↑ 𝑘 ) ∈ ℚ ∧ 𝑏 ∈ ℚ ) → ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ∈ ℚ ) |
| 213 |
208 211 212
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ∈ ℚ ) |
| 214 |
|
qaddcl |
⊢ ( ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ∈ ℚ ∧ ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ∈ ℚ ) → ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ∈ ℚ ) |
| 215 |
205 213 214
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ∈ ℚ ) |
| 216 |
2 18
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ∈ ℚ ) → ( 𝐹 ‘ ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) ∈ ℝ ) |
| 217 |
197 215 216
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) ∈ ℝ ) |
| 218 |
2 18
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ∈ ℚ ) → ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ) ∈ ℝ ) |
| 219 |
197 205 218
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ) ∈ ℝ ) |
| 220 |
2 18
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ∈ ℚ ) → ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ∈ ℝ ) |
| 221 |
197 213 220
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ∈ ℝ ) |
| 222 |
219 221
|
readdcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ) + ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) ∈ ℝ ) |
| 223 |
|
rpexpcl |
⊢ ( ( 𝑆 ∈ ℝ+ ∧ 𝑘 ∈ ℤ ) → ( 𝑆 ↑ 𝑘 ) ∈ ℝ+ ) |
| 224 |
146 163 223
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ↑ 𝑘 ) ∈ ℝ+ ) |
| 225 |
224
|
rpred |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ↑ 𝑘 ) ∈ ℝ ) |
| 226 |
225
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝑆 ↑ 𝑘 ) ∈ ℝ ) |
| 227 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( 𝑆 ↑ 𝑘 ) ∈ ℝ ) → ( 2 · ( 𝑆 ↑ 𝑘 ) ) ∈ ℝ ) |
| 228 |
135 226 227
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 2 · ( 𝑆 ↑ 𝑘 ) ) ∈ ℝ ) |
| 229 |
|
qex |
⊢ ℚ ∈ V |
| 230 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
| 231 |
1 230
|
ressplusg |
⊢ ( ℚ ∈ V → + = ( +g ‘ 𝑄 ) ) |
| 232 |
229 231
|
ax-mp |
⊢ + = ( +g ‘ 𝑄 ) |
| 233 |
2 18 232
|
abvtri |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ∈ ℚ ∧ ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ∈ ℚ ) → ( 𝐹 ‘ ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) ≤ ( ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ) + ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) ) |
| 234 |
197 205 213 233
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) ≤ ( ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ) + ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) ) |
| 235 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 236 |
1 235
|
ressmulr |
⊢ ( ℚ ∈ V → · = ( .r ‘ 𝑄 ) ) |
| 237 |
229 236
|
ax-mp |
⊢ · = ( .r ‘ 𝑄 ) |
| 238 |
2 18 237
|
abvmul |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑃 ↑ 𝑘 ) ∈ ℚ ∧ 𝑎 ∈ ℚ ) → ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ) = ( ( 𝐹 ‘ ( 𝑃 ↑ 𝑘 ) ) · ( 𝐹 ‘ 𝑎 ) ) ) |
| 239 |
197 200 203 238
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ) = ( ( 𝐹 ‘ ( 𝑃 ↑ 𝑘 ) ) · ( 𝐹 ‘ 𝑎 ) ) ) |
| 240 |
17
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 𝑃 ∈ ℚ ) |
| 241 |
172
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 𝑘 ∈ ℕ0 ) |
| 242 |
1 2
|
qabvexp |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑃 ∈ ℚ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑃 ↑ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ) |
| 243 |
197 240 241 242
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ ( 𝑃 ↑ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ) |
| 244 |
243
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝐹 ‘ ( 𝑃 ↑ 𝑘 ) ) · ( 𝐹 ‘ 𝑎 ) ) = ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑎 ) ) ) |
| 245 |
239 244
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ) = ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑎 ) ) ) |
| 246 |
197 240 19
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ 𝑃 ) ∈ ℝ ) |
| 247 |
246 241
|
reexpcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ∈ ℝ ) |
| 248 |
2 18
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑎 ∈ ℚ ) → ( 𝐹 ‘ 𝑎 ) ∈ ℝ ) |
| 249 |
197 203 248
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ 𝑎 ) ∈ ℝ ) |
| 250 |
247 249
|
remulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑎 ) ) ∈ ℝ ) |
| 251 |
|
elz |
⊢ ( 𝑎 ∈ ℤ ↔ ( 𝑎 ∈ ℝ ∧ ( 𝑎 = 0 ∨ 𝑎 ∈ ℕ ∨ - 𝑎 ∈ ℕ ) ) ) |
| 252 |
251
|
simprbi |
⊢ ( 𝑎 ∈ ℤ → ( 𝑎 = 0 ∨ 𝑎 ∈ ℕ ∨ - 𝑎 ∈ ℕ ) ) |
| 253 |
252
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( 𝑎 = 0 ∨ 𝑎 ∈ ℕ ∨ - 𝑎 ∈ ℕ ) ) |
| 254 |
2 22
|
abv0 |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ‘ 0 ) = 0 ) |
| 255 |
5 254
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = 0 ) |
| 256 |
|
0le1 |
⊢ 0 ≤ 1 |
| 257 |
255 256
|
eqbrtrdi |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ≤ 1 ) |
| 258 |
257
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( 𝐹 ‘ 0 ) ≤ 1 ) |
| 259 |
|
fveq2 |
⊢ ( 𝑎 = 0 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 0 ) ) |
| 260 |
259
|
breq1d |
⊢ ( 𝑎 = 0 → ( ( 𝐹 ‘ 𝑎 ) ≤ 1 ↔ ( 𝐹 ‘ 0 ) ≤ 1 ) ) |
| 261 |
258 260
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( 𝑎 = 0 → ( 𝐹 ‘ 𝑎 ) ≤ 1 ) ) |
| 262 |
|
nnq |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℚ ) |
| 263 |
2 18
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑛 ∈ ℚ ) → ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
| 264 |
5 262 263
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
| 265 |
|
1re |
⊢ 1 ∈ ℝ |
| 266 |
|
lenlt |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑛 ) ≤ 1 ↔ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ) ) |
| 267 |
264 265 266
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑛 ) ≤ 1 ↔ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ) ) |
| 268 |
267
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ≤ 1 ↔ ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ) ) |
| 269 |
6 268
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ≤ 1 ) |
| 270 |
|
fveq2 |
⊢ ( 𝑛 = 𝑎 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 271 |
270
|
breq1d |
⊢ ( 𝑛 = 𝑎 → ( ( 𝐹 ‘ 𝑛 ) ≤ 1 ↔ ( 𝐹 ‘ 𝑎 ) ≤ 1 ) ) |
| 272 |
271
|
rspccv |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ≤ 1 → ( 𝑎 ∈ ℕ → ( 𝐹 ‘ 𝑎 ) ≤ 1 ) ) |
| 273 |
269 272
|
syl |
⊢ ( 𝜑 → ( 𝑎 ∈ ℕ → ( 𝐹 ‘ 𝑎 ) ≤ 1 ) ) |
| 274 |
273
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( 𝑎 ∈ ℕ → ( 𝐹 ‘ 𝑎 ) ≤ 1 ) ) |
| 275 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ - 𝑎 ∈ ℕ ) ) → 𝐹 ∈ 𝐴 ) |
| 276 |
202
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ - 𝑎 ∈ ℕ ) ) → 𝑎 ∈ ℚ ) |
| 277 |
|
eqid |
⊢ ( invg ‘ 𝑄 ) = ( invg ‘ 𝑄 ) |
| 278 |
2 18 277
|
abvneg |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑎 ∈ ℚ ) → ( 𝐹 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑎 ) ) = ( 𝐹 ‘ 𝑎 ) ) |
| 279 |
275 276 278
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ - 𝑎 ∈ ℕ ) ) → ( 𝐹 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑎 ) ) = ( 𝐹 ‘ 𝑎 ) ) |
| 280 |
|
fveq2 |
⊢ ( 𝑛 = ( ( invg ‘ 𝑄 ) ‘ 𝑎 ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑎 ) ) ) |
| 281 |
280
|
breq1d |
⊢ ( 𝑛 = ( ( invg ‘ 𝑄 ) ‘ 𝑎 ) → ( ( 𝐹 ‘ 𝑛 ) ≤ 1 ↔ ( 𝐹 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑎 ) ) ≤ 1 ) ) |
| 282 |
269
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ - 𝑎 ∈ ℕ ) ) → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ≤ 1 ) |
| 283 |
1
|
qrngneg |
⊢ ( 𝑎 ∈ ℚ → ( ( invg ‘ 𝑄 ) ‘ 𝑎 ) = - 𝑎 ) |
| 284 |
276 283
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ - 𝑎 ∈ ℕ ) ) → ( ( invg ‘ 𝑄 ) ‘ 𝑎 ) = - 𝑎 ) |
| 285 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ - 𝑎 ∈ ℕ ) ) → - 𝑎 ∈ ℕ ) |
| 286 |
284 285
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ - 𝑎 ∈ ℕ ) ) → ( ( invg ‘ 𝑄 ) ‘ 𝑎 ) ∈ ℕ ) |
| 287 |
281 282 286
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ - 𝑎 ∈ ℕ ) ) → ( 𝐹 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑎 ) ) ≤ 1 ) |
| 288 |
279 287
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℤ ∧ - 𝑎 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑎 ) ≤ 1 ) |
| 289 |
288
|
expr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( - 𝑎 ∈ ℕ → ( 𝐹 ‘ 𝑎 ) ≤ 1 ) ) |
| 290 |
261 274 289
|
3jaod |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( ( 𝑎 = 0 ∨ 𝑎 ∈ ℕ ∨ - 𝑎 ∈ ℕ ) → ( 𝐹 ‘ 𝑎 ) ≤ 1 ) ) |
| 291 |
253 290
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( 𝐹 ‘ 𝑎 ) ≤ 1 ) |
| 292 |
291
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ℤ ( 𝐹 ‘ 𝑎 ) ≤ 1 ) |
| 293 |
292
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ∀ 𝑎 ∈ ℤ ( 𝐹 ‘ 𝑎 ) ≤ 1 ) |
| 294 |
|
rsp |
⊢ ( ∀ 𝑎 ∈ ℤ ( 𝐹 ‘ 𝑎 ) ≤ 1 → ( 𝑎 ∈ ℤ → ( 𝐹 ‘ 𝑎 ) ≤ 1 ) ) |
| 295 |
293 201 294
|
sylc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ 𝑎 ) ≤ 1 ) |
| 296 |
265
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 1 ∈ ℝ ) |
| 297 |
163
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 𝑘 ∈ ℤ ) |
| 298 |
24
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 0 < ( 𝐹 ‘ 𝑃 ) ) |
| 299 |
|
expgt0 |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < ( 𝐹 ‘ 𝑃 ) ) → 0 < ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ) |
| 300 |
246 297 298 299
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 0 < ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ) |
| 301 |
|
lemul2 |
⊢ ( ( ( 𝐹 ‘ 𝑎 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ∈ ℝ ∧ 0 < ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑎 ) ≤ 1 ↔ ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑎 ) ) ≤ ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) · 1 ) ) ) |
| 302 |
249 296 247 300 301
|
syl112anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝐹 ‘ 𝑎 ) ≤ 1 ↔ ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑎 ) ) ≤ ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) · 1 ) ) ) |
| 303 |
295 302
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑎 ) ) ≤ ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) · 1 ) ) |
| 304 |
247
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ∈ ℂ ) |
| 305 |
304
|
mulridd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) · 1 ) = ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ) |
| 306 |
303 305
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑎 ) ) ≤ ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ) |
| 307 |
146
|
rpred |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → 𝑆 ∈ ℝ ) |
| 308 |
307
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 𝑆 ∈ ℝ ) |
| 309 |
144
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ 𝑃 ) ∈ ℝ+ ) |
| 310 |
309
|
rpge0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 0 ≤ ( 𝐹 ‘ 𝑃 ) ) |
| 311 |
176
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 𝑝 ∈ ℕ ) |
| 312 |
311 104
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 𝑝 ∈ ℚ ) |
| 313 |
197 312 138
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ 𝑝 ) ∈ ℝ ) |
| 314 |
|
max1 |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑝 ) ∈ ℝ ) → ( 𝐹 ‘ 𝑃 ) ≤ if ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑃 ) ) ) |
| 315 |
246 313 314
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ 𝑃 ) ≤ if ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑃 ) ) ) |
| 316 |
315 10
|
breqtrrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ 𝑃 ) ≤ 𝑆 ) |
| 317 |
|
leexp1a |
⊢ ( ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 0 ≤ ( 𝐹 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑃 ) ≤ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ≤ ( 𝑆 ↑ 𝑘 ) ) |
| 318 |
246 308 241 310 316 317
|
syl32anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) ≤ ( 𝑆 ↑ 𝑘 ) ) |
| 319 |
250 247 226 306 318
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑎 ) ) ≤ ( 𝑆 ↑ 𝑘 ) ) |
| 320 |
245 319
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ) ≤ ( 𝑆 ↑ 𝑘 ) ) |
| 321 |
2 18 237
|
abvmul |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑝 ↑ 𝑘 ) ∈ ℚ ∧ 𝑏 ∈ ℚ ) → ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) = ( ( 𝐹 ‘ ( 𝑝 ↑ 𝑘 ) ) · ( 𝐹 ‘ 𝑏 ) ) ) |
| 322 |
197 208 211 321
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) = ( ( 𝐹 ‘ ( 𝑝 ↑ 𝑘 ) ) · ( 𝐹 ‘ 𝑏 ) ) ) |
| 323 |
1 2
|
qabvexp |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑝 ∈ ℚ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑝 ↑ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ) |
| 324 |
197 312 241 323
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ ( 𝑝 ↑ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ) |
| 325 |
324
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝐹 ‘ ( 𝑝 ↑ 𝑘 ) ) · ( 𝐹 ‘ 𝑏 ) ) = ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑏 ) ) ) |
| 326 |
322 325
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) = ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑏 ) ) ) |
| 327 |
313 241
|
reexpcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ∈ ℝ ) |
| 328 |
2 18
|
abvcl |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑏 ∈ ℚ ) → ( 𝐹 ‘ 𝑏 ) ∈ ℝ ) |
| 329 |
197 211 328
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ 𝑏 ) ∈ ℝ ) |
| 330 |
327 329
|
remulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑏 ) ) ∈ ℝ ) |
| 331 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) |
| 332 |
331
|
breq1d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝐹 ‘ 𝑎 ) ≤ 1 ↔ ( 𝐹 ‘ 𝑏 ) ≤ 1 ) ) |
| 333 |
332 293 209
|
rspcdva |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ 𝑏 ) ≤ 1 ) |
| 334 |
311
|
nnne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 𝑝 ≠ 0 ) |
| 335 |
197 312 334 140
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 0 < ( 𝐹 ‘ 𝑝 ) ) |
| 336 |
|
expgt0 |
⊢ ( ( ( 𝐹 ‘ 𝑝 ) ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < ( 𝐹 ‘ 𝑝 ) ) → 0 < ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ) |
| 337 |
313 297 335 336
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 0 < ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ) |
| 338 |
|
lemul2 |
⊢ ( ( ( 𝐹 ‘ 𝑏 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ∈ ℝ ∧ 0 < ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑏 ) ≤ 1 ↔ ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) · 1 ) ) ) |
| 339 |
329 296 327 337 338
|
syl112anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝐹 ‘ 𝑏 ) ≤ 1 ↔ ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) · 1 ) ) ) |
| 340 |
333 339
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) · 1 ) ) |
| 341 |
327
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ∈ ℂ ) |
| 342 |
341
|
mulridd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) · 1 ) = ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ) |
| 343 |
340 342
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑏 ) ) ≤ ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ) |
| 344 |
143
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ 𝑝 ) ∈ ℝ+ ) |
| 345 |
344
|
rpge0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → 0 ≤ ( 𝐹 ‘ 𝑝 ) ) |
| 346 |
|
max2 |
⊢ ( ( ( 𝐹 ‘ 𝑃 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑝 ) ∈ ℝ ) → ( 𝐹 ‘ 𝑝 ) ≤ if ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑃 ) ) ) |
| 347 |
246 313 346
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ 𝑝 ) ≤ if ( ( 𝐹 ‘ 𝑃 ) ≤ ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑝 ) , ( 𝐹 ‘ 𝑃 ) ) ) |
| 348 |
347 10
|
breqtrrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ 𝑝 ) ≤ 𝑆 ) |
| 349 |
|
leexp1a |
⊢ ( ( ( ( 𝐹 ‘ 𝑝 ) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 0 ≤ ( 𝐹 ‘ 𝑝 ) ∧ ( 𝐹 ‘ 𝑝 ) ≤ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ≤ ( 𝑆 ↑ 𝑘 ) ) |
| 350 |
313 308 241 345 348 349
|
syl32anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) ≤ ( 𝑆 ↑ 𝑘 ) ) |
| 351 |
330 327 226 343 350
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( ( 𝐹 ‘ 𝑝 ) ↑ 𝑘 ) · ( 𝐹 ‘ 𝑏 ) ) ≤ ( 𝑆 ↑ 𝑘 ) ) |
| 352 |
326 351
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ≤ ( 𝑆 ↑ 𝑘 ) ) |
| 353 |
219 221 226 226 320 352
|
le2addd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ) + ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) ≤ ( ( 𝑆 ↑ 𝑘 ) + ( 𝑆 ↑ 𝑘 ) ) ) |
| 354 |
224
|
rpcnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ↑ 𝑘 ) ∈ ℂ ) |
| 355 |
354
|
2timesd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 2 · ( 𝑆 ↑ 𝑘 ) ) = ( ( 𝑆 ↑ 𝑘 ) + ( 𝑆 ↑ 𝑘 ) ) ) |
| 356 |
355
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 2 · ( 𝑆 ↑ 𝑘 ) ) = ( ( 𝑆 ↑ 𝑘 ) + ( 𝑆 ↑ 𝑘 ) ) ) |
| 357 |
353 356
|
breqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( 𝐹 ‘ ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) ) + ( 𝐹 ‘ ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) ≤ ( 2 · ( 𝑆 ↑ 𝑘 ) ) ) |
| 358 |
217 222 228 234 357
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 𝐹 ‘ ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) ≤ ( 2 · ( 𝑆 ↑ 𝑘 ) ) ) |
| 359 |
|
fveq2 |
⊢ ( 1 = ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) → ( 𝐹 ‘ 1 ) = ( 𝐹 ‘ ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) ) |
| 360 |
359
|
breq1d |
⊢ ( 1 = ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) → ( ( 𝐹 ‘ 1 ) ≤ ( 2 · ( 𝑆 ↑ 𝑘 ) ) ↔ ( 𝐹 ‘ ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) ) ≤ ( 2 · ( 𝑆 ↑ 𝑘 ) ) ) ) |
| 361 |
358 360
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( 1 = ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) → ( 𝐹 ‘ 1 ) ≤ ( 2 · ( 𝑆 ↑ 𝑘 ) ) ) ) |
| 362 |
196 361
|
sylbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ) → ( ( ( 𝑃 ↑ 𝑘 ) gcd ( 𝑝 ↑ 𝑘 ) ) = ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) → ( 𝐹 ‘ 1 ) ≤ ( 2 · ( 𝑆 ↑ 𝑘 ) ) ) ) |
| 363 |
362
|
anassrs |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( ( 𝑃 ↑ 𝑘 ) gcd ( 𝑝 ↑ 𝑘 ) ) = ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) → ( 𝐹 ‘ 1 ) ≤ ( 2 · ( 𝑆 ↑ 𝑘 ) ) ) ) |
| 364 |
363
|
rexlimdvva |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( ( 𝑃 ↑ 𝑘 ) gcd ( 𝑝 ↑ 𝑘 ) ) = ( ( ( 𝑃 ↑ 𝑘 ) · 𝑎 ) + ( ( 𝑝 ↑ 𝑘 ) · 𝑏 ) ) → ( 𝐹 ‘ 1 ) ≤ ( 2 · ( 𝑆 ↑ 𝑘 ) ) ) ) |
| 365 |
181 364
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 1 ) ≤ ( 2 · ( 𝑆 ↑ 𝑘 ) ) ) |
| 366 |
170 365
|
eqbrtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → 1 ≤ ( 2 · ( 𝑆 ↑ 𝑘 ) ) ) |
| 367 |
224
|
rpregt0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑆 ↑ 𝑘 ) ∈ ℝ ∧ 0 < ( 𝑆 ↑ 𝑘 ) ) ) |
| 368 |
|
ledivmul2 |
⊢ ( ( 1 ∈ ℝ ∧ 2 ∈ ℝ ∧ ( ( 𝑆 ↑ 𝑘 ) ∈ ℝ ∧ 0 < ( 𝑆 ↑ 𝑘 ) ) ) → ( ( 1 / ( 𝑆 ↑ 𝑘 ) ) ≤ 2 ↔ 1 ≤ ( 2 · ( 𝑆 ↑ 𝑘 ) ) ) ) |
| 369 |
265 135 367 368
|
mp3an12i |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / ( 𝑆 ↑ 𝑘 ) ) ≤ 2 ↔ 1 ≤ ( 2 · ( 𝑆 ↑ 𝑘 ) ) ) ) |
| 370 |
366 369
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 1 / ( 𝑆 ↑ 𝑘 ) ) ≤ 2 ) |
| 371 |
165 370
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝑆 ) ↑ 𝑘 ) ≤ 2 ) |
| 372 |
|
reexpcl |
⊢ ( ( ( 1 / 𝑆 ) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / 𝑆 ) ↑ 𝑘 ) ∈ ℝ ) |
| 373 |
147 172 372
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝑆 ) ↑ 𝑘 ) ∈ ℝ ) |
| 374 |
|
lenlt |
⊢ ( ( ( ( 1 / 𝑆 ) ↑ 𝑘 ) ∈ ℝ ∧ 2 ∈ ℝ ) → ( ( ( 1 / 𝑆 ) ↑ 𝑘 ) ≤ 2 ↔ ¬ 2 < ( ( 1 / 𝑆 ) ↑ 𝑘 ) ) ) |
| 375 |
373 135 374
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 1 / 𝑆 ) ↑ 𝑘 ) ≤ 2 ↔ ¬ 2 < ( ( 1 / 𝑆 ) ↑ 𝑘 ) ) ) |
| 376 |
371 375
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ¬ 2 < ( ( 1 / 𝑆 ) ↑ 𝑘 ) ) |
| 377 |
376
|
pm2.21d |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 2 < ( ( 1 / 𝑆 ) ↑ 𝑘 ) → ¬ ( 𝐹 ‘ 𝑝 ) < 1 ) ) |
| 378 |
377
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ( ∃ 𝑘 ∈ ℕ 2 < ( ( 1 / 𝑆 ) ↑ 𝑘 ) → ¬ ( 𝐹 ‘ 𝑝 ) < 1 ) ) |
| 379 |
158 378
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ( 𝑃 ≠ 𝑝 ∧ ( 𝐹 ‘ 𝑝 ) < 1 ) ) → ¬ ( 𝐹 ‘ 𝑝 ) < 1 ) |
| 380 |
379
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( ( 𝐹 ‘ 𝑝 ) < 1 → ¬ ( 𝐹 ‘ 𝑝 ) < 1 ) ) |
| 381 |
380
|
pm2.01d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ¬ ( 𝐹 ‘ 𝑝 ) < 1 ) |
| 382 |
|
fveq2 |
⊢ ( 𝑛 = 𝑝 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑝 ) ) |
| 383 |
382
|
breq2d |
⊢ ( 𝑛 = 𝑝 → ( 1 < ( 𝐹 ‘ 𝑛 ) ↔ 1 < ( 𝐹 ‘ 𝑝 ) ) ) |
| 384 |
383
|
notbid |
⊢ ( 𝑛 = 𝑝 → ( ¬ 1 < ( 𝐹 ‘ 𝑛 ) ↔ ¬ 1 < ( 𝐹 ‘ 𝑝 ) ) ) |
| 385 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ∀ 𝑛 ∈ ℕ ¬ 1 < ( 𝐹 ‘ 𝑛 ) ) |
| 386 |
384 385 103
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ¬ 1 < ( 𝐹 ‘ 𝑝 ) ) |
| 387 |
|
lttri3 |
⊢ ( ( ( 𝐹 ‘ 𝑝 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑝 ) = 1 ↔ ( ¬ ( 𝐹 ‘ 𝑝 ) < 1 ∧ ¬ 1 < ( 𝐹 ‘ 𝑝 ) ) ) ) |
| 388 |
139 265 387
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( ( 𝐹 ‘ 𝑝 ) = 1 ↔ ( ¬ ( 𝐹 ‘ 𝑝 ) < 1 ∧ ¬ 1 < ( 𝐹 ‘ 𝑝 ) ) ) ) |
| 389 |
381 386 388
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( 𝐹 ‘ 𝑝 ) = 1 ) |
| 390 |
112 134 389
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑝 ) ↑𝑐 𝑅 ) = ( 𝐹 ‘ 𝑝 ) ) |
| 391 |
110 390
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑃 ≠ 𝑝 ) → ( 𝐹 ‘ 𝑝 ) = ( ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑝 ) ) |
| 392 |
391
|
ex |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑃 ≠ 𝑝 → ( 𝐹 ‘ 𝑝 ) = ( ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑝 ) ) ) |
| 393 |
101 392
|
pm2.61dne |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝐹 ‘ 𝑝 ) = ( ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ‘ 𝑝 ) ) |
| 394 |
1 2 5 50 393
|
ostthlem2 |
⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ) |
| 395 |
|
oveq2 |
⊢ ( 𝑎 = 𝑅 → ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) = ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) |
| 396 |
395
|
mpteq2dv |
⊢ ( 𝑎 = 𝑅 → ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) = ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ) |
| 397 |
396
|
rspceeqv |
⊢ ( ( 𝑅 ∈ ℝ+ ∧ 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑅 ) ) ) → ∃ 𝑎 ∈ ℝ+ 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) |
| 398 |
48 394 397
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑎 ∈ ℝ+ 𝐹 = ( 𝑦 ∈ ℚ ↦ ( ( ( 𝐽 ‘ 𝑃 ) ‘ 𝑦 ) ↑𝑐 𝑎 ) ) ) |