| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qrng.q |
⊢ 𝑄 = ( ℂfld ↾s ℚ ) |
| 2 |
|
qabsabv.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑄 ) |
| 3 |
|
ostthlem1.1 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐴 ) |
| 4 |
|
ostthlem1.2 |
⊢ ( 𝜑 → 𝐺 ∈ 𝐴 ) |
| 5 |
|
ostthlem1.3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) |
| 6 |
1
|
qrngbas |
⊢ ℚ = ( Base ‘ 𝑄 ) |
| 7 |
2 6
|
abvf |
⊢ ( 𝐹 ∈ 𝐴 → 𝐹 : ℚ ⟶ ℝ ) |
| 8 |
|
ffn |
⊢ ( 𝐹 : ℚ ⟶ ℝ → 𝐹 Fn ℚ ) |
| 9 |
3 7 8
|
3syl |
⊢ ( 𝜑 → 𝐹 Fn ℚ ) |
| 10 |
2 6
|
abvf |
⊢ ( 𝐺 ∈ 𝐴 → 𝐺 : ℚ ⟶ ℝ ) |
| 11 |
|
ffn |
⊢ ( 𝐺 : ℚ ⟶ ℝ → 𝐺 Fn ℚ ) |
| 12 |
4 10 11
|
3syl |
⊢ ( 𝜑 → 𝐺 Fn ℚ ) |
| 13 |
|
elq |
⊢ ( 𝑦 ∈ ℚ ↔ ∃ 𝑘 ∈ ℤ ∃ 𝑛 ∈ ℕ 𝑦 = ( 𝑘 / 𝑛 ) ) |
| 14 |
1
|
qdrng |
⊢ 𝑄 ∈ DivRing |
| 15 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ ) ) → 𝑄 ∈ DivRing ) |
| 16 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ ) ) → 𝐹 ∈ 𝐴 ) |
| 17 |
|
zq |
⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ℚ ) |
| 18 |
17
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ ) ) → 𝑘 ∈ ℚ ) |
| 19 |
|
nnq |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℚ ) |
| 20 |
19
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ ) ) → 𝑛 ∈ ℚ ) |
| 21 |
|
nnne0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) |
| 22 |
21
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ ) ) → 𝑛 ≠ 0 ) |
| 23 |
1
|
qrng0 |
⊢ 0 = ( 0g ‘ 𝑄 ) |
| 24 |
|
eqid |
⊢ ( /r ‘ 𝑄 ) = ( /r ‘ 𝑄 ) |
| 25 |
2 6 23 24
|
abvdiv |
⊢ ( ( ( 𝑄 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) ∧ ( 𝑘 ∈ ℚ ∧ 𝑛 ∈ ℚ ∧ 𝑛 ≠ 0 ) ) → ( 𝐹 ‘ ( 𝑘 ( /r ‘ 𝑄 ) 𝑛 ) ) = ( ( 𝐹 ‘ 𝑘 ) / ( 𝐹 ‘ 𝑛 ) ) ) |
| 26 |
15 16 18 20 22 25
|
syl23anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ ) ) → ( 𝐹 ‘ ( 𝑘 ( /r ‘ 𝑄 ) 𝑛 ) ) = ( ( 𝐹 ‘ 𝑘 ) / ( 𝐹 ‘ 𝑛 ) ) ) |
| 27 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ ) ) → 𝐺 ∈ 𝐴 ) |
| 28 |
2 6 23 24
|
abvdiv |
⊢ ( ( ( 𝑄 ∈ DivRing ∧ 𝐺 ∈ 𝐴 ) ∧ ( 𝑘 ∈ ℚ ∧ 𝑛 ∈ ℚ ∧ 𝑛 ≠ 0 ) ) → ( 𝐺 ‘ ( 𝑘 ( /r ‘ 𝑄 ) 𝑛 ) ) = ( ( 𝐺 ‘ 𝑘 ) / ( 𝐺 ‘ 𝑛 ) ) ) |
| 29 |
15 27 18 20 22 28
|
syl23anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ ) ) → ( 𝐺 ‘ ( 𝑘 ( /r ‘ 𝑄 ) 𝑛 ) ) = ( ( 𝐺 ‘ 𝑘 ) / ( 𝐺 ‘ 𝑛 ) ) ) |
| 30 |
2 23
|
abv0 |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ‘ 0 ) = 0 ) |
| 31 |
3 30
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = 0 ) |
| 32 |
2 23
|
abv0 |
⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ‘ 0 ) = 0 ) |
| 33 |
4 32
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ 0 ) = 0 ) |
| 34 |
31 33
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = ( 𝐺 ‘ 0 ) ) |
| 35 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 0 ) ) |
| 36 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 0 ) ) |
| 37 |
35 36
|
eqeq12d |
⊢ ( 𝑘 = 0 → ( ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ↔ ( 𝐹 ‘ 0 ) = ( 𝐺 ‘ 0 ) ) ) |
| 38 |
34 37
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑘 = 0 → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) ) |
| 39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( 𝑘 = 0 → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) ) |
| 40 |
39
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 = 0 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 41 |
|
elnn1uz2 |
⊢ ( 𝑛 ∈ ℕ ↔ ( 𝑛 = 1 ∨ 𝑛 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 42 |
1
|
qrng1 |
⊢ 1 = ( 1r ‘ 𝑄 ) |
| 43 |
2 42
|
abv1 |
⊢ ( ( 𝑄 ∈ DivRing ∧ 𝐹 ∈ 𝐴 ) → ( 𝐹 ‘ 1 ) = 1 ) |
| 44 |
14 3 43
|
sylancr |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = 1 ) |
| 45 |
2 42
|
abv1 |
⊢ ( ( 𝑄 ∈ DivRing ∧ 𝐺 ∈ 𝐴 ) → ( 𝐺 ‘ 1 ) = 1 ) |
| 46 |
14 4 45
|
sylancr |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) = 1 ) |
| 47 |
44 46
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) |
| 48 |
|
fveq2 |
⊢ ( 𝑛 = 1 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 1 ) ) |
| 49 |
|
fveq2 |
⊢ ( 𝑛 = 1 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 1 ) ) |
| 50 |
48 49
|
eqeq12d |
⊢ ( 𝑛 = 1 → ( ( 𝐹 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ↔ ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) ) |
| 51 |
47 50
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑛 = 1 → ( 𝐹 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) ) |
| 52 |
51
|
imp |
⊢ ( ( 𝜑 ∧ 𝑛 = 1 ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) |
| 53 |
52 5
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑛 = 1 ∨ 𝑛 ∈ ( ℤ≥ ‘ 2 ) ) ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) |
| 54 |
41 53
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) |
| 55 |
54
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) |
| 56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) |
| 57 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 58 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 59 |
57 58
|
eqeq12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐹 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ↔ ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) ) |
| 60 |
59
|
rspccva |
⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 61 |
56 60
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 62 |
|
fveq2 |
⊢ ( 𝑛 = ( ( invg ‘ 𝑄 ) ‘ 𝑘 ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑘 ) ) ) |
| 63 |
|
fveq2 |
⊢ ( 𝑛 = ( ( invg ‘ 𝑄 ) ‘ 𝑘 ) → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑘 ) ) ) |
| 64 |
62 63
|
eqeq12d |
⊢ ( 𝑛 = ( ( invg ‘ 𝑄 ) ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ↔ ( 𝐹 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑘 ) ) = ( 𝐺 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑘 ) ) ) ) |
| 65 |
55
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ - 𝑘 ∈ ℕ ) → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) |
| 66 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → 𝑘 ∈ ℚ ) |
| 67 |
1
|
qrngneg |
⊢ ( 𝑘 ∈ ℚ → ( ( invg ‘ 𝑄 ) ‘ 𝑘 ) = - 𝑘 ) |
| 68 |
66 67
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( ( invg ‘ 𝑄 ) ‘ 𝑘 ) = - 𝑘 ) |
| 69 |
68
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( ( ( invg ‘ 𝑄 ) ‘ 𝑘 ) ∈ ℕ ↔ - 𝑘 ∈ ℕ ) ) |
| 70 |
69
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ - 𝑘 ∈ ℕ ) → ( ( invg ‘ 𝑄 ) ‘ 𝑘 ) ∈ ℕ ) |
| 71 |
64 65 70
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ - 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑘 ) ) = ( 𝐺 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑘 ) ) ) |
| 72 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ - 𝑘 ∈ ℕ ) → 𝐹 ∈ 𝐴 ) |
| 73 |
17
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ - 𝑘 ∈ ℕ ) → 𝑘 ∈ ℚ ) |
| 74 |
|
eqid |
⊢ ( invg ‘ 𝑄 ) = ( invg ‘ 𝑄 ) |
| 75 |
2 6 74
|
abvneg |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑘 ∈ ℚ ) → ( 𝐹 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 76 |
72 73 75
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ - 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 77 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ - 𝑘 ∈ ℕ ) → 𝐺 ∈ 𝐴 ) |
| 78 |
2 6 74
|
abvneg |
⊢ ( ( 𝐺 ∈ 𝐴 ∧ 𝑘 ∈ ℚ ) → ( 𝐺 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑘 ) ) = ( 𝐺 ‘ 𝑘 ) ) |
| 79 |
77 73 78
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ - 𝑘 ∈ ℕ ) → ( 𝐺 ‘ ( ( invg ‘ 𝑄 ) ‘ 𝑘 ) ) = ( 𝐺 ‘ 𝑘 ) ) |
| 80 |
71 76 79
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ - 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 81 |
|
elz |
⊢ ( 𝑘 ∈ ℤ ↔ ( 𝑘 ∈ ℝ ∧ ( 𝑘 = 0 ∨ 𝑘 ∈ ℕ ∨ - 𝑘 ∈ ℕ ) ) ) |
| 82 |
81
|
simprbi |
⊢ ( 𝑘 ∈ ℤ → ( 𝑘 = 0 ∨ 𝑘 ∈ ℕ ∨ - 𝑘 ∈ ℕ ) ) |
| 83 |
82
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( 𝑘 = 0 ∨ 𝑘 ∈ ℕ ∨ - 𝑘 ∈ ℕ ) ) |
| 84 |
40 61 80 83
|
mpjao3dan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 85 |
84
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 86 |
54
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) |
| 87 |
85 86
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝐹 ‘ 𝑘 ) / ( 𝐹 ‘ 𝑛 ) ) = ( ( 𝐺 ‘ 𝑘 ) / ( 𝐺 ‘ 𝑛 ) ) ) |
| 88 |
29 87
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ ) ) → ( 𝐺 ‘ ( 𝑘 ( /r ‘ 𝑄 ) 𝑛 ) ) = ( ( 𝐹 ‘ 𝑘 ) / ( 𝐹 ‘ 𝑛 ) ) ) |
| 89 |
26 88
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ ) ) → ( 𝐹 ‘ ( 𝑘 ( /r ‘ 𝑄 ) 𝑛 ) ) = ( 𝐺 ‘ ( 𝑘 ( /r ‘ 𝑄 ) 𝑛 ) ) ) |
| 90 |
1
|
qrngdiv |
⊢ ( ( 𝑘 ∈ ℚ ∧ 𝑛 ∈ ℚ ∧ 𝑛 ≠ 0 ) → ( 𝑘 ( /r ‘ 𝑄 ) 𝑛 ) = ( 𝑘 / 𝑛 ) ) |
| 91 |
18 20 22 90
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ ) ) → ( 𝑘 ( /r ‘ 𝑄 ) 𝑛 ) = ( 𝑘 / 𝑛 ) ) |
| 92 |
91
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ ) ) → ( 𝐹 ‘ ( 𝑘 ( /r ‘ 𝑄 ) 𝑛 ) ) = ( 𝐹 ‘ ( 𝑘 / 𝑛 ) ) ) |
| 93 |
91
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ ) ) → ( 𝐺 ‘ ( 𝑘 ( /r ‘ 𝑄 ) 𝑛 ) ) = ( 𝐺 ‘ ( 𝑘 / 𝑛 ) ) ) |
| 94 |
89 92 93
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ ) ) → ( 𝐹 ‘ ( 𝑘 / 𝑛 ) ) = ( 𝐺 ‘ ( 𝑘 / 𝑛 ) ) ) |
| 95 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑘 / 𝑛 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑘 / 𝑛 ) ) ) |
| 96 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑘 / 𝑛 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝑘 / 𝑛 ) ) ) |
| 97 |
95 96
|
eqeq12d |
⊢ ( 𝑦 = ( 𝑘 / 𝑛 ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ↔ ( 𝐹 ‘ ( 𝑘 / 𝑛 ) ) = ( 𝐺 ‘ ( 𝑘 / 𝑛 ) ) ) ) |
| 98 |
94 97
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℤ ∧ 𝑛 ∈ ℕ ) ) → ( 𝑦 = ( 𝑘 / 𝑛 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) |
| 99 |
98
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ℤ ∃ 𝑛 ∈ ℕ 𝑦 = ( 𝑘 / 𝑛 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) |
| 100 |
13 99
|
biimtrid |
⊢ ( 𝜑 → ( 𝑦 ∈ ℚ → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) |
| 101 |
100
|
imp |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℚ ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 102 |
9 12 101
|
eqfnfvd |
⊢ ( 𝜑 → 𝐹 = 𝐺 ) |