| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qrng.q |
⊢ 𝑄 = ( ℂfld ↾s ℚ ) |
| 2 |
|
qabsabv.a |
⊢ 𝐴 = ( AbsVal ‘ 𝑄 ) |
| 3 |
|
ostthlem1.1 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐴 ) |
| 4 |
|
ostthlem1.2 |
⊢ ( 𝜑 → 𝐺 ∈ 𝐴 ) |
| 5 |
|
ostthlem2.3 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝐹 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑝 ) ) |
| 6 |
|
eluz2nn |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 2 ) → 𝑛 ∈ ℕ ) |
| 7 |
|
fveq2 |
⊢ ( 𝑝 = 1 → ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 1 ) ) |
| 8 |
|
fveq2 |
⊢ ( 𝑝 = 1 → ( 𝐺 ‘ 𝑝 ) = ( 𝐺 ‘ 1 ) ) |
| 9 |
7 8
|
eqeq12d |
⊢ ( 𝑝 = 1 → ( ( 𝐹 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑝 ) ↔ ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) ) |
| 10 |
9
|
imbi2d |
⊢ ( 𝑝 = 1 → ( ( 𝜑 → ( 𝐹 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑝 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) ) ) |
| 11 |
|
fveq2 |
⊢ ( 𝑝 = 𝑦 → ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 12 |
|
fveq2 |
⊢ ( 𝑝 = 𝑦 → ( 𝐺 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 13 |
11 12
|
eqeq12d |
⊢ ( 𝑝 = 𝑦 → ( ( 𝐹 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑝 ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) |
| 14 |
13
|
imbi2d |
⊢ ( 𝑝 = 𝑦 → ( ( 𝜑 → ( 𝐹 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑝 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 15 |
|
fveq2 |
⊢ ( 𝑝 = 𝑧 → ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 16 |
|
fveq2 |
⊢ ( 𝑝 = 𝑧 → ( 𝐺 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑧 ) ) |
| 17 |
15 16
|
eqeq12d |
⊢ ( 𝑝 = 𝑧 → ( ( 𝐹 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑝 ) ↔ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) |
| 18 |
17
|
imbi2d |
⊢ ( 𝑝 = 𝑧 → ( ( 𝜑 → ( 𝐹 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑝 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 19 |
|
fveq2 |
⊢ ( 𝑝 = ( 𝑦 · 𝑧 ) → ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) ) |
| 20 |
|
fveq2 |
⊢ ( 𝑝 = ( 𝑦 · 𝑧 ) → ( 𝐺 ‘ 𝑝 ) = ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) ) |
| 21 |
19 20
|
eqeq12d |
⊢ ( 𝑝 = ( 𝑦 · 𝑧 ) → ( ( 𝐹 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑝 ) ↔ ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) ) ) |
| 22 |
21
|
imbi2d |
⊢ ( 𝑝 = ( 𝑦 · 𝑧 ) → ( ( 𝜑 → ( 𝐹 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑝 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) ) ) ) |
| 23 |
|
fveq2 |
⊢ ( 𝑝 = 𝑛 → ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 24 |
|
fveq2 |
⊢ ( 𝑝 = 𝑛 → ( 𝐺 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑛 ) ) |
| 25 |
23 24
|
eqeq12d |
⊢ ( 𝑝 = 𝑛 → ( ( 𝐹 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑝 ) ↔ ( 𝐹 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) ) |
| 26 |
25
|
imbi2d |
⊢ ( 𝑝 = 𝑛 → ( ( 𝜑 → ( 𝐹 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑝 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) ) ) |
| 27 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 28 |
1
|
qrng1 |
⊢ 1 = ( 1r ‘ 𝑄 ) |
| 29 |
1
|
qrng0 |
⊢ 0 = ( 0g ‘ 𝑄 ) |
| 30 |
2 28 29
|
abv1z |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 𝐹 ‘ 1 ) = 1 ) |
| 31 |
3 27 30
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = 1 ) |
| 32 |
2 28 29
|
abv1z |
⊢ ( ( 𝐺 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 𝐺 ‘ 1 ) = 1 ) |
| 33 |
4 27 32
|
sylancl |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) = 1 ) |
| 34 |
31 33
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 1 ) ) |
| 35 |
5
|
expcom |
⊢ ( 𝑝 ∈ ℙ → ( 𝜑 → ( 𝐹 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑝 ) ) ) |
| 36 |
|
jcab |
⊢ ( ( 𝜑 → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ↔ ( ( 𝜑 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ ( 𝜑 → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 37 |
|
oveq12 |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) → ( ( 𝐹 ‘ 𝑦 ) · ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐺 ‘ 𝑦 ) · ( 𝐺 ‘ 𝑧 ) ) ) |
| 38 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ) → 𝐹 ∈ 𝐴 ) |
| 39 |
|
eluzelz |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) → 𝑦 ∈ ℤ ) |
| 40 |
39
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ) → 𝑦 ∈ ℤ ) |
| 41 |
|
zq |
⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℚ ) |
| 42 |
40 41
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ) → 𝑦 ∈ ℚ ) |
| 43 |
|
eluzelz |
⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 2 ) → 𝑧 ∈ ℤ ) |
| 44 |
43
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ) → 𝑧 ∈ ℤ ) |
| 45 |
|
zq |
⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℚ ) |
| 46 |
44 45
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ) → 𝑧 ∈ ℚ ) |
| 47 |
1
|
qrngbas |
⊢ ℚ = ( Base ‘ 𝑄 ) |
| 48 |
|
qex |
⊢ ℚ ∈ V |
| 49 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 50 |
1 49
|
ressmulr |
⊢ ( ℚ ∈ V → · = ( .r ‘ 𝑄 ) ) |
| 51 |
48 50
|
ax-mp |
⊢ · = ( .r ‘ 𝑄 ) |
| 52 |
2 47 51
|
abvmul |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑦 ∈ ℚ ∧ 𝑧 ∈ ℚ ) → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) · ( 𝐹 ‘ 𝑧 ) ) ) |
| 53 |
38 42 46 52
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ) → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) · ( 𝐹 ‘ 𝑧 ) ) ) |
| 54 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ) → 𝐺 ∈ 𝐴 ) |
| 55 |
2 47 51
|
abvmul |
⊢ ( ( 𝐺 ∈ 𝐴 ∧ 𝑦 ∈ ℚ ∧ 𝑧 ∈ ℚ ) → ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) = ( ( 𝐺 ‘ 𝑦 ) · ( 𝐺 ‘ 𝑧 ) ) ) |
| 56 |
54 42 46 55
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ) → ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) = ( ( 𝐺 ‘ 𝑦 ) · ( 𝐺 ‘ 𝑧 ) ) ) |
| 57 |
53 56
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ) → ( ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) ↔ ( ( 𝐹 ‘ 𝑦 ) · ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐺 ‘ 𝑦 ) · ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 58 |
37 57
|
imbitrrid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) ) → ( ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) ) ) |
| 59 |
58
|
expcom |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝜑 → ( ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) ) ) ) |
| 60 |
59
|
a2d |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝜑 → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) → ( 𝜑 → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) ) ) ) |
| 61 |
36 60
|
biimtrrid |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ( 𝜑 → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) ∧ ( 𝜑 → ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) → ( 𝜑 → ( 𝐹 ‘ ( 𝑦 · 𝑧 ) ) = ( 𝐺 ‘ ( 𝑦 · 𝑧 ) ) ) ) ) |
| 62 |
10 14 18 22 26 34 35 61
|
prmind |
⊢ ( 𝑛 ∈ ℕ → ( 𝜑 → ( 𝐹 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) ) |
| 63 |
62
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) |
| 64 |
6 63
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) |
| 65 |
1 2 3 4 64
|
ostthlem1 |
⊢ ( 𝜑 → 𝐹 = 𝐺 ) |