| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sseq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ ( ⊥ ‘ 𝐵 ) ) ) |
| 2 |
|
oveq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( 𝐴 +ℋ 𝐵 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ 𝐵 ) ) |
| 3 |
|
oveq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ 𝐵 ) ) |
| 4 |
2 3
|
eqeq12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ 𝐵 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ 𝐵 ) ) ) |
| 5 |
1 4
|
imbi12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) → ( ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ ( ⊥ ‘ 𝐵 ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ 𝐵 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ 𝐵 ) ) ) ) |
| 6 |
|
fveq2 |
⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ⊥ ‘ 𝐵 ) = ( ⊥ ‘ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) |
| 7 |
6
|
sseq2d |
⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ ( ⊥ ‘ 𝐵 ) ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ ( ⊥ ‘ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) ) |
| 8 |
|
oveq2 |
⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ 𝐵 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) |
| 9 |
|
oveq2 |
⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ 𝐵 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) |
| 10 |
8 9
|
eqeq12d |
⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ 𝐵 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ 𝐵 ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) ) |
| 11 |
7 10
|
imbi12d |
⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) → ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ ( ⊥ ‘ 𝐵 ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ 𝐵 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ 𝐵 ) ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ ( ⊥ ‘ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) ) ) |
| 12 |
|
ifchhv |
⊢ if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∈ Cℋ |
| 13 |
|
ifchhv |
⊢ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ∈ Cℋ |
| 14 |
12 13
|
osumi |
⊢ ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ⊆ ( ⊥ ‘ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) +ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , ℋ ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , ℋ ) ) ) |
| 15 |
5 11 14
|
dedth2h |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 16 |
15
|
3impia |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ) → ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ) |