| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							osumcl.p | 
							⊢  +   =  ( +𝑃 ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							osumcl.o | 
							⊢  ⊥   =  ( ⊥𝑃 ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							osumcl.c | 
							⊢ 𝐶  =  ( PSubCl ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  ∧  𝑋  ⊆  (  ⊥  ‘ 𝑌 ) )  →  𝐾  ∈  HL )  | 
						
						
							| 5 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  ∧  𝑋  ⊆  (  ⊥  ‘ 𝑌 ) )  →  𝑋  ∈  𝐶 )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							⊢ ( Atoms ‘ 𝐾 )  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 7 | 
							
								6 3
							 | 
							psubclssatN | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶 )  →  𝑋  ⊆  ( Atoms ‘ 𝐾 ) )  | 
						
						
							| 8 | 
							
								4 5 7
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  ∧  𝑋  ⊆  (  ⊥  ‘ 𝑌 ) )  →  𝑋  ⊆  ( Atoms ‘ 𝐾 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  ∧  𝑋  ⊆  (  ⊥  ‘ 𝑌 ) )  →  𝑌  ∈  𝐶 )  | 
						
						
							| 10 | 
							
								6 3
							 | 
							psubclssatN | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑌  ∈  𝐶 )  →  𝑌  ⊆  ( Atoms ‘ 𝐾 ) )  | 
						
						
							| 11 | 
							
								4 9 10
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  ∧  𝑋  ⊆  (  ⊥  ‘ 𝑌 ) )  →  𝑌  ⊆  ( Atoms ‘ 𝐾 ) )  | 
						
						
							| 12 | 
							
								6 1
							 | 
							paddssat | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ⊆  ( Atoms ‘ 𝐾 )  ∧  𝑌  ⊆  ( Atoms ‘ 𝐾 ) )  →  ( 𝑋  +  𝑌 )  ⊆  ( Atoms ‘ 𝐾 ) )  | 
						
						
							| 13 | 
							
								4 8 11 12
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  ∧  𝑋  ⊆  (  ⊥  ‘ 𝑌 ) )  →  ( 𝑋  +  𝑌 )  ⊆  ( Atoms ‘ 𝐾 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simpll1 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  ∧  𝑋  ⊆  (  ⊥  ‘ 𝑌 ) )  ∧  𝑋  =  ∅ )  →  𝐾  ∈  HL )  | 
						
						
							| 15 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑋  =  ∅  →  ( 𝑋  +  𝑌 )  =  ( ∅  +  𝑌 ) )  | 
						
						
							| 16 | 
							
								6 1
							 | 
							padd02 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑌  ⊆  ( Atoms ‘ 𝐾 ) )  →  ( ∅  +  𝑌 )  =  𝑌 )  | 
						
						
							| 17 | 
							
								4 11 16
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  ∧  𝑋  ⊆  (  ⊥  ‘ 𝑌 ) )  →  ( ∅  +  𝑌 )  =  𝑌 )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							sylan9eqr | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  ∧  𝑋  ⊆  (  ⊥  ‘ 𝑌 ) )  ∧  𝑋  =  ∅ )  →  ( 𝑋  +  𝑌 )  =  𝑌 )  | 
						
						
							| 19 | 
							
								
							 | 
							simpll3 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  ∧  𝑋  ⊆  (  ⊥  ‘ 𝑌 ) )  ∧  𝑋  =  ∅ )  →  𝑌  ∈  𝐶 )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							eqeltrd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  ∧  𝑋  ⊆  (  ⊥  ‘ 𝑌 ) )  ∧  𝑋  =  ∅ )  →  ( 𝑋  +  𝑌 )  ∈  𝐶 )  | 
						
						
							| 21 | 
							
								2 3
							 | 
							psubcli2N | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  +  𝑌 )  ∈  𝐶 )  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝑋  +  𝑌 ) ) )  =  ( 𝑋  +  𝑌 ) )  | 
						
						
							| 22 | 
							
								14 20 21
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  ∧  𝑋  ⊆  (  ⊥  ‘ 𝑌 ) )  ∧  𝑋  =  ∅ )  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝑋  +  𝑌 ) ) )  =  ( 𝑋  +  𝑌 ) )  | 
						
						
							| 23 | 
							
								1 2 3
							 | 
							osumcllem11N | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  ∧  ( 𝑋  ⊆  (  ⊥  ‘ 𝑌 )  ∧  𝑋  ≠  ∅ ) )  →  ( 𝑋  +  𝑌 )  =  (  ⊥  ‘ (  ⊥  ‘ ( 𝑋  +  𝑌 ) ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							anassrs | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  ∧  𝑋  ⊆  (  ⊥  ‘ 𝑌 ) )  ∧  𝑋  ≠  ∅ )  →  ( 𝑋  +  𝑌 )  =  (  ⊥  ‘ (  ⊥  ‘ ( 𝑋  +  𝑌 ) ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							eqcomd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  ∧  𝑋  ⊆  (  ⊥  ‘ 𝑌 ) )  ∧  𝑋  ≠  ∅ )  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝑋  +  𝑌 ) ) )  =  ( 𝑋  +  𝑌 ) )  | 
						
						
							| 26 | 
							
								22 25
							 | 
							pm2.61dane | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  ∧  𝑋  ⊆  (  ⊥  ‘ 𝑌 ) )  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝑋  +  𝑌 ) ) )  =  ( 𝑋  +  𝑌 ) )  | 
						
						
							| 27 | 
							
								6 2 3
							 | 
							ispsubclN | 
							⊢ ( 𝐾  ∈  HL  →  ( ( 𝑋  +  𝑌 )  ∈  𝐶  ↔  ( ( 𝑋  +  𝑌 )  ⊆  ( Atoms ‘ 𝐾 )  ∧  (  ⊥  ‘ (  ⊥  ‘ ( 𝑋  +  𝑌 ) ) )  =  ( 𝑋  +  𝑌 ) ) ) )  | 
						
						
							| 28 | 
							
								4 27
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  ∧  𝑋  ⊆  (  ⊥  ‘ 𝑌 ) )  →  ( ( 𝑋  +  𝑌 )  ∈  𝐶  ↔  ( ( 𝑋  +  𝑌 )  ⊆  ( Atoms ‘ 𝐾 )  ∧  (  ⊥  ‘ (  ⊥  ‘ ( 𝑋  +  𝑌 ) ) )  =  ( 𝑋  +  𝑌 ) ) ) )  | 
						
						
							| 29 | 
							
								13 26 28
							 | 
							mpbir2and | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐶  ∧  𝑌  ∈  𝐶 )  ∧  𝑋  ⊆  (  ⊥  ‘ 𝑌 ) )  →  ( 𝑋  +  𝑌 )  ∈  𝐶 )  |