Metamath Proof Explorer


Theorem osumcllem10N

Description: Lemma for osumclN . Contradict osumcllem9N . (Contributed by NM, 25-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses osumcllem.l = ( le ‘ 𝐾 )
osumcllem.j = ( join ‘ 𝐾 )
osumcllem.a 𝐴 = ( Atoms ‘ 𝐾 )
osumcllem.p + = ( +𝑃𝐾 )
osumcllem.o = ( ⊥𝑃𝐾 )
osumcllem.c 𝐶 = ( PSubCl ‘ 𝐾 )
osumcllem.m 𝑀 = ( 𝑋 + { 𝑝 } )
osumcllem.u 𝑈 = ( ‘ ( ‘ ( 𝑋 + 𝑌 ) ) )
Assertion osumcllem10N ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ ( 𝑋 + 𝑌 ) ) → 𝑀𝑋 )

Proof

Step Hyp Ref Expression
1 osumcllem.l = ( le ‘ 𝐾 )
2 osumcllem.j = ( join ‘ 𝐾 )
3 osumcllem.a 𝐴 = ( Atoms ‘ 𝐾 )
4 osumcllem.p + = ( +𝑃𝐾 )
5 osumcllem.o = ( ⊥𝑃𝐾 )
6 osumcllem.c 𝐶 = ( PSubCl ‘ 𝐾 )
7 osumcllem.m 𝑀 = ( 𝑋 + { 𝑝 } )
8 osumcllem.u 𝑈 = ( ‘ ( ‘ ( 𝑋 + 𝑌 ) ) )
9 simp11 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ ( 𝑋 + 𝑌 ) ) → 𝐾 ∈ HL )
10 simp2 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ ( 𝑋 + 𝑌 ) ) → 𝑝𝐴 )
11 10 snssd ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ ( 𝑋 + 𝑌 ) ) → { 𝑝 } ⊆ 𝐴 )
12 simp12 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ ( 𝑋 + 𝑌 ) ) → 𝑋𝐴 )
13 3 4 sspadd2 ( ( 𝐾 ∈ HL ∧ { 𝑝 } ⊆ 𝐴𝑋𝐴 ) → { 𝑝 } ⊆ ( 𝑋 + { 𝑝 } ) )
14 9 11 12 13 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ ( 𝑋 + 𝑌 ) ) → { 𝑝 } ⊆ ( 𝑋 + { 𝑝 } ) )
15 vex 𝑝 ∈ V
16 15 snss ( 𝑝 ∈ ( 𝑋 + { 𝑝 } ) ↔ { 𝑝 } ⊆ ( 𝑋 + { 𝑝 } ) )
17 14 16 sylibr ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ ( 𝑋 + 𝑌 ) ) → 𝑝 ∈ ( 𝑋 + { 𝑝 } ) )
18 17 7 eleqtrrdi ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ ( 𝑋 + 𝑌 ) ) → 𝑝𝑀 )
19 3 4 sspadd1 ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) → 𝑋 ⊆ ( 𝑋 + 𝑌 ) )
20 19 3ad2ant1 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ ( 𝑋 + 𝑌 ) ) → 𝑋 ⊆ ( 𝑋 + 𝑌 ) )
21 simp3 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ ( 𝑋 + 𝑌 ) ) → ¬ 𝑝 ∈ ( 𝑋 + 𝑌 ) )
22 20 21 ssneldd ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ ( 𝑋 + 𝑌 ) ) → ¬ 𝑝𝑋 )
23 nelne1 ( ( 𝑝𝑀 ∧ ¬ 𝑝𝑋 ) → 𝑀𝑋 )
24 18 22 23 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ 𝑝𝐴 ∧ ¬ 𝑝 ∈ ( 𝑋 + 𝑌 ) ) → 𝑀𝑋 )