Step |
Hyp |
Ref |
Expression |
1 |
|
osumcllem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
osumcllem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
osumcllem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
osumcllem.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
5 |
|
osumcllem.o |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
6 |
|
osumcllem.c |
⊢ 𝐶 = ( PSubCl ‘ 𝐾 ) |
7 |
|
osumcllem.m |
⊢ 𝑀 = ( 𝑋 + { 𝑝 } ) |
8 |
|
osumcllem.u |
⊢ 𝑈 = ( ⊥ ‘ ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ) |
9 |
|
incom |
⊢ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑈 ) = ( 𝑈 ∩ ( ⊥ ‘ 𝑋 ) ) |
10 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → 𝐾 ∈ HL ) |
11 |
|
simp3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) |
12 |
3 6
|
psubclssatN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ) → 𝑌 ⊆ 𝐴 ) |
13 |
12
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → 𝑌 ⊆ 𝐴 ) |
14 |
3 5
|
polssatN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑌 ) ⊆ 𝐴 ) |
15 |
10 13 14
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → ( ⊥ ‘ 𝑌 ) ⊆ 𝐴 ) |
16 |
11 15
|
sstrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → 𝑋 ⊆ 𝐴 ) |
17 |
3 4 5
|
poldmj1N |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) = ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ) |
18 |
10 16 13 17
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) = ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ) |
19 |
|
incom |
⊢ ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) = ( ( ⊥ ‘ 𝑌 ) ∩ ( ⊥ ‘ 𝑋 ) ) |
20 |
18 19
|
eqtrdi |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) = ( ( ⊥ ‘ 𝑌 ) ∩ ( ⊥ ‘ 𝑋 ) ) ) |
21 |
20
|
fveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ) = ( ⊥ ‘ ( ( ⊥ ‘ 𝑌 ) ∩ ( ⊥ ‘ 𝑋 ) ) ) ) |
22 |
8 21
|
syl5eq |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → 𝑈 = ( ⊥ ‘ ( ( ⊥ ‘ 𝑌 ) ∩ ( ⊥ ‘ 𝑋 ) ) ) ) |
23 |
22
|
ineq1d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → ( 𝑈 ∩ ( ⊥ ‘ 𝑋 ) ) = ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑌 ) ∩ ( ⊥ ‘ 𝑋 ) ) ) ∩ ( ⊥ ‘ 𝑋 ) ) ) |
24 |
3 5
|
polcon2N |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → 𝑌 ⊆ ( ⊥ ‘ 𝑋 ) ) |
25 |
13 24
|
syld3an2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → 𝑌 ⊆ ( ⊥ ‘ 𝑋 ) ) |
26 |
3 5
|
poml5N |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ ( ⊥ ‘ 𝑋 ) ) → ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑌 ) ∩ ( ⊥ ‘ 𝑋 ) ) ) ∩ ( ⊥ ‘ 𝑋 ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) |
27 |
10 16 25 26
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑌 ) ∩ ( ⊥ ‘ 𝑋 ) ) ) ∩ ( ⊥ ‘ 𝑋 ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) |
28 |
5 6
|
psubcli2N |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
29 |
28
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
30 |
23 27 29
|
3eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → ( 𝑈 ∩ ( ⊥ ‘ 𝑋 ) ) = 𝑌 ) |
31 |
9 30
|
syl5eq |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → ( ( ⊥ ‘ 𝑋 ) ∩ 𝑈 ) = 𝑌 ) |