Step |
Hyp |
Ref |
Expression |
1 |
|
osumcllem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
osumcllem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
osumcllem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
osumcllem.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
5 |
|
osumcllem.o |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
6 |
|
osumcllem.c |
⊢ 𝐶 = ( PSubCl ‘ 𝐾 ) |
7 |
|
osumcllem.m |
⊢ 𝑀 = ( 𝑋 + { 𝑝 } ) |
8 |
|
osumcllem.u |
⊢ 𝑈 = ( ⊥ ‘ ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ) |
9 |
|
n0i |
⊢ ( 𝑟 ∈ ( 𝑋 ∩ 𝑌 ) → ¬ ( 𝑋 ∩ 𝑌 ) = ∅ ) |
10 |
|
incom |
⊢ ( 𝑋 ∩ 𝑌 ) = ( 𝑌 ∩ 𝑋 ) |
11 |
|
sslin |
⊢ ( 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) → ( 𝑌 ∩ 𝑋 ) ⊆ ( 𝑌 ∩ ( ⊥ ‘ 𝑌 ) ) ) |
12 |
11
|
3ad2ant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → ( 𝑌 ∩ 𝑋 ) ⊆ ( 𝑌 ∩ ( ⊥ ‘ 𝑌 ) ) ) |
13 |
10 12
|
eqsstrid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → ( 𝑋 ∩ 𝑌 ) ⊆ ( 𝑌 ∩ ( ⊥ ‘ 𝑌 ) ) ) |
14 |
3 5
|
pnonsingN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑌 ∩ ( ⊥ ‘ 𝑌 ) ) = ∅ ) |
15 |
14
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → ( 𝑌 ∩ ( ⊥ ‘ 𝑌 ) ) = ∅ ) |
16 |
13 15
|
sseqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → ( 𝑋 ∩ 𝑌 ) ⊆ ∅ ) |
17 |
|
ss0b |
⊢ ( ( 𝑋 ∩ 𝑌 ) ⊆ ∅ ↔ ( 𝑋 ∩ 𝑌 ) = ∅ ) |
18 |
16 17
|
sylib |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) → ( 𝑋 ∩ 𝑌 ) = ∅ ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ) ) → ( 𝑋 ∩ 𝑌 ) = ∅ ) |
20 |
9 19
|
nsyl3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ) ) → ¬ 𝑟 ∈ ( 𝑋 ∩ 𝑌 ) ) |
21 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ) ) → 𝑞 ∈ 𝑌 ) |
22 |
|
eleq1w |
⊢ ( 𝑞 = 𝑟 → ( 𝑞 ∈ 𝑌 ↔ 𝑟 ∈ 𝑌 ) ) |
23 |
21 22
|
syl5ibcom |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ) ) → ( 𝑞 = 𝑟 → 𝑟 ∈ 𝑌 ) ) |
24 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ) ) → 𝑟 ∈ 𝑋 ) |
25 |
23 24
|
jctild |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ) ) → ( 𝑞 = 𝑟 → ( 𝑟 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ) ) ) |
26 |
|
elin |
⊢ ( 𝑟 ∈ ( 𝑋 ∩ 𝑌 ) ↔ ( 𝑟 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ) ) |
27 |
25 26
|
syl6ibr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ) ) → ( 𝑞 = 𝑟 → 𝑟 ∈ ( 𝑋 ∩ 𝑌 ) ) ) |
28 |
27
|
necon3bd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ) ) → ( ¬ 𝑟 ∈ ( 𝑋 ∩ 𝑌 ) → 𝑞 ≠ 𝑟 ) ) |
29 |
20 28
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ) ) → 𝑞 ≠ 𝑟 ) |