Metamath Proof Explorer


Theorem osumcllem5N

Description: Lemma for osumclN . (Contributed by NM, 24-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses osumcllem.l = ( le ‘ 𝐾 )
osumcllem.j = ( join ‘ 𝐾 )
osumcllem.a 𝐴 = ( Atoms ‘ 𝐾 )
osumcllem.p + = ( +𝑃𝐾 )
osumcllem.o = ( ⊥𝑃𝐾 )
osumcllem.c 𝐶 = ( PSubCl ‘ 𝐾 )
osumcllem.m 𝑀 = ( 𝑋 + { 𝑝 } )
osumcllem.u 𝑈 = ( ‘ ( ‘ ( 𝑋 + 𝑌 ) ) )
Assertion osumcllem5N ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ 𝑝𝐴 ∧ ( 𝑟𝑋𝑞𝑌𝑝 ( 𝑟 𝑞 ) ) ) → 𝑝 ∈ ( 𝑋 + 𝑌 ) )

Proof

Step Hyp Ref Expression
1 osumcllem.l = ( le ‘ 𝐾 )
2 osumcllem.j = ( join ‘ 𝐾 )
3 osumcllem.a 𝐴 = ( Atoms ‘ 𝐾 )
4 osumcllem.p + = ( +𝑃𝐾 )
5 osumcllem.o = ( ⊥𝑃𝐾 )
6 osumcllem.c 𝐶 = ( PSubCl ‘ 𝐾 )
7 osumcllem.m 𝑀 = ( 𝑋 + { 𝑝 } )
8 osumcllem.u 𝑈 = ( ‘ ( ‘ ( 𝑋 + 𝑌 ) ) )
9 simp11 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ 𝑝𝐴 ∧ ( 𝑟𝑋𝑞𝑌𝑝 ( 𝑟 𝑞 ) ) ) → 𝐾 ∈ HL )
10 9 hllatd ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ 𝑝𝐴 ∧ ( 𝑟𝑋𝑞𝑌𝑝 ( 𝑟 𝑞 ) ) ) → 𝐾 ∈ Lat )
11 simp12 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ 𝑝𝐴 ∧ ( 𝑟𝑋𝑞𝑌𝑝 ( 𝑟 𝑞 ) ) ) → 𝑋𝐴 )
12 simp13 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ 𝑝𝐴 ∧ ( 𝑟𝑋𝑞𝑌𝑝 ( 𝑟 𝑞 ) ) ) → 𝑌𝐴 )
13 simp31 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ 𝑝𝐴 ∧ ( 𝑟𝑋𝑞𝑌𝑝 ( 𝑟 𝑞 ) ) ) → 𝑟𝑋 )
14 simp32 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ 𝑝𝐴 ∧ ( 𝑟𝑋𝑞𝑌𝑝 ( 𝑟 𝑞 ) ) ) → 𝑞𝑌 )
15 simp2 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ 𝑝𝐴 ∧ ( 𝑟𝑋𝑞𝑌𝑝 ( 𝑟 𝑞 ) ) ) → 𝑝𝐴 )
16 simp33 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ 𝑝𝐴 ∧ ( 𝑟𝑋𝑞𝑌𝑝 ( 𝑟 𝑞 ) ) ) → 𝑝 ( 𝑟 𝑞 ) )
17 1 2 3 4 elpaddri ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑟𝑋𝑞𝑌 ) ∧ ( 𝑝𝐴𝑝 ( 𝑟 𝑞 ) ) ) → 𝑝 ∈ ( 𝑋 + 𝑌 ) )
18 10 11 12 13 14 15 16 17 syl322anc ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ 𝑝𝐴 ∧ ( 𝑟𝑋𝑞𝑌𝑝 ( 𝑟 𝑞 ) ) ) → 𝑝 ∈ ( 𝑋 + 𝑌 ) )