Step |
Hyp |
Ref |
Expression |
1 |
|
osumcllem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
osumcllem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
osumcllem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
osumcllem.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
5 |
|
osumcllem.o |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
6 |
|
osumcllem.c |
⊢ 𝐶 = ( PSubCl ‘ 𝐾 ) |
7 |
|
osumcllem.m |
⊢ 𝑀 = ( 𝑋 + { 𝑝 } ) |
8 |
|
osumcllem.u |
⊢ 𝑈 = ( ⊥ ‘ ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ) |
9 |
|
simp11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ ( 𝑟 ∨ 𝑝 ) ) ) → 𝐾 ∈ HL ) |
10 |
|
simp12 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ ( 𝑟 ∨ 𝑝 ) ) ) → 𝑋 ⊆ 𝐴 ) |
11 |
|
simp13 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ ( 𝑟 ∨ 𝑝 ) ) ) → 𝑌 ⊆ 𝐴 ) |
12 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ ( 𝑟 ∨ 𝑝 ) ) ) → 𝑝 ∈ 𝐴 ) |
13 |
|
simp31 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ ( 𝑟 ∨ 𝑝 ) ) ) → 𝑟 ∈ 𝑋 ) |
14 |
|
simp32 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ ( 𝑟 ∨ 𝑝 ) ) ) → 𝑞 ∈ 𝑌 ) |
15 |
11 14
|
sseldd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ ( 𝑟 ∨ 𝑝 ) ) ) → 𝑞 ∈ 𝐴 ) |
16 |
10 13
|
sseldd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ ( 𝑟 ∨ 𝑝 ) ) ) → 𝑟 ∈ 𝐴 ) |
17 |
15 12 16
|
3jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ ( 𝑟 ∨ 𝑝 ) ) ) → ( 𝑞 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) |
18 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ ( 𝑟 ∨ 𝑝 ) ) ) → 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) |
19 |
1 2 3 4 5 6 7 8
|
osumcllem4N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ) ) → 𝑞 ≠ 𝑟 ) |
20 |
9 11 18 13 14 19
|
syl32anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ ( 𝑟 ∨ 𝑝 ) ) ) → 𝑞 ≠ 𝑟 ) |
21 |
9 17 20
|
3jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ ( 𝑟 ∨ 𝑝 ) ) ) → ( 𝐾 ∈ HL ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ 𝑞 ≠ 𝑟 ) ) |
22 |
|
simp33 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ ( 𝑟 ∨ 𝑝 ) ) ) → 𝑞 ≤ ( 𝑟 ∨ 𝑝 ) ) |
23 |
1 2 3
|
hlatexch1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ 𝑞 ≠ 𝑟 ) → ( 𝑞 ≤ ( 𝑟 ∨ 𝑝 ) → 𝑝 ≤ ( 𝑟 ∨ 𝑞 ) ) ) |
24 |
21 22 23
|
sylc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ ( 𝑟 ∨ 𝑝 ) ) ) → 𝑝 ≤ ( 𝑟 ∨ 𝑞 ) ) |
25 |
1 2 3 4 5 6 7 8
|
osumcllem5N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝐴 ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑝 ≤ ( 𝑟 ∨ 𝑞 ) ) ) → 𝑝 ∈ ( 𝑋 + 𝑌 ) ) |
26 |
9 10 11 12 13 14 24 25
|
syl313anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ ( 𝑟 ∨ 𝑝 ) ) ) → 𝑝 ∈ ( 𝑋 + 𝑌 ) ) |