Step |
Hyp |
Ref |
Expression |
1 |
|
osumcllem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
osumcllem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
osumcllem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
osumcllem.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
5 |
|
osumcllem.o |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
6 |
|
osumcllem.c |
⊢ 𝐶 = ( PSubCl ‘ 𝐾 ) |
7 |
|
osumcllem.m |
⊢ 𝑀 = ( 𝑋 + { 𝑝 } ) |
8 |
|
osumcllem.u |
⊢ 𝑈 = ( ⊥ ‘ ( ⊥ ‘ ( 𝑋 + 𝑌 ) ) ) |
9 |
|
n0 |
⊢ ( ( 𝑌 ∩ 𝑀 ) ≠ ∅ ↔ ∃ 𝑞 𝑞 ∈ ( 𝑌 ∩ 𝑀 ) ) |
10 |
1 2 3 4 5 6 7 8
|
osumcllem7N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑞 ∈ ( 𝑌 ∩ 𝑀 ) ) → 𝑝 ∈ ( 𝑋 + 𝑌 ) ) |
11 |
10
|
3expia |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴 ) ) → ( 𝑞 ∈ ( 𝑌 ∩ 𝑀 ) → 𝑝 ∈ ( 𝑋 + 𝑌 ) ) ) |
12 |
11
|
exlimdv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴 ) ) → ( ∃ 𝑞 𝑞 ∈ ( 𝑌 ∩ 𝑀 ) → 𝑝 ∈ ( 𝑋 + 𝑌 ) ) ) |
13 |
9 12
|
syl5bi |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴 ) ) → ( ( 𝑌 ∩ 𝑀 ) ≠ ∅ → 𝑝 ∈ ( 𝑋 + 𝑌 ) ) ) |
14 |
13
|
necon1bd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴 ) ) → ( ¬ 𝑝 ∈ ( 𝑋 + 𝑌 ) → ( 𝑌 ∩ 𝑀 ) = ∅ ) ) |
15 |
14
|
3impia |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ ( ⊥ ‘ 𝑌 ) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴 ) ∧ ¬ 𝑝 ∈ ( 𝑋 + 𝑌 ) ) → ( 𝑌 ∩ 𝑀 ) = ∅ ) |