Metamath Proof Explorer


Theorem osumcllem8N

Description: Lemma for osumclN . (Contributed by NM, 24-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses osumcllem.l = ( le ‘ 𝐾 )
osumcllem.j = ( join ‘ 𝐾 )
osumcllem.a 𝐴 = ( Atoms ‘ 𝐾 )
osumcllem.p + = ( +𝑃𝐾 )
osumcllem.o = ( ⊥𝑃𝐾 )
osumcllem.c 𝐶 = ( PSubCl ‘ 𝐾 )
osumcllem.m 𝑀 = ( 𝑋 + { 𝑝 } )
osumcllem.u 𝑈 = ( ‘ ( ‘ ( 𝑋 + 𝑌 ) ) )
Assertion osumcllem8N ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑋 ⊆ ( 𝑌 ) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴 ) ∧ ¬ 𝑝 ∈ ( 𝑋 + 𝑌 ) ) → ( 𝑌𝑀 ) = ∅ )

Proof

Step Hyp Ref Expression
1 osumcllem.l = ( le ‘ 𝐾 )
2 osumcllem.j = ( join ‘ 𝐾 )
3 osumcllem.a 𝐴 = ( Atoms ‘ 𝐾 )
4 osumcllem.p + = ( +𝑃𝐾 )
5 osumcllem.o = ( ⊥𝑃𝐾 )
6 osumcllem.c 𝐶 = ( PSubCl ‘ 𝐾 )
7 osumcllem.m 𝑀 = ( 𝑋 + { 𝑝 } )
8 osumcllem.u 𝑈 = ( ‘ ( ‘ ( 𝑋 + 𝑌 ) ) )
9 n0 ( ( 𝑌𝑀 ) ≠ ∅ ↔ ∃ 𝑞 𝑞 ∈ ( 𝑌𝑀 ) )
10 1 2 3 4 5 6 7 8 osumcllem7N ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑋 ⊆ ( 𝑌 ) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴 ) ∧ 𝑞 ∈ ( 𝑌𝑀 ) ) → 𝑝 ∈ ( 𝑋 + 𝑌 ) )
11 10 3expia ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑋 ⊆ ( 𝑌 ) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴 ) ) → ( 𝑞 ∈ ( 𝑌𝑀 ) → 𝑝 ∈ ( 𝑋 + 𝑌 ) ) )
12 11 exlimdv ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑋 ⊆ ( 𝑌 ) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴 ) ) → ( ∃ 𝑞 𝑞 ∈ ( 𝑌𝑀 ) → 𝑝 ∈ ( 𝑋 + 𝑌 ) ) )
13 9 12 syl5bi ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑋 ⊆ ( 𝑌 ) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴 ) ) → ( ( 𝑌𝑀 ) ≠ ∅ → 𝑝 ∈ ( 𝑋 + 𝑌 ) ) )
14 13 necon1bd ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑋 ⊆ ( 𝑌 ) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴 ) ) → ( ¬ 𝑝 ∈ ( 𝑋 + 𝑌 ) → ( 𝑌𝑀 ) = ∅ ) )
15 14 3impia ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑋 ⊆ ( 𝑌 ) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴 ) ∧ ¬ 𝑝 ∈ ( 𝑋 + 𝑌 ) ) → ( 𝑌𝑀 ) = ∅ )