| Step |
Hyp |
Ref |
Expression |
| 1 |
|
osum.1 |
⊢ 𝐴 ∈ Cℋ |
| 2 |
|
osum.2 |
⊢ 𝐵 ∈ Cℋ |
| 3 |
1 2
|
cmcm2i |
⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐴 𝐶ℋ ( ⊥ ‘ 𝐵 ) ) |
| 4 |
2
|
choccli |
⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
| 5 |
1 4
|
cmbr4i |
⊢ ( 𝐴 𝐶ℋ ( ⊥ ‘ 𝐵 ) ↔ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ ( ⊥ ‘ 𝐵 ) ) |
| 6 |
3 5
|
bitri |
⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ ( ⊥ ‘ 𝐵 ) ) |
| 7 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 8 |
7 4
|
chjcli |
⊢ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ |
| 9 |
1 8
|
chincli |
⊢ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∈ Cℋ |
| 10 |
9 2
|
osumi |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ ( ⊥ ‘ 𝐵 ) → ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) +ℋ 𝐵 ) = ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ 𝐵 ) ) |
| 11 |
7 4
|
chjcomi |
⊢ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) |
| 12 |
11
|
ineq2i |
⊢ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) = ( 𝐴 ∩ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) |
| 13 |
12
|
oveq1i |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ 𝐵 ) = ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ∨ℋ 𝐵 ) |
| 14 |
4 7
|
chjcli |
⊢ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∈ Cℋ |
| 15 |
1 14
|
chincli |
⊢ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ∈ Cℋ |
| 16 |
15 2
|
chjcomi |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ∨ℋ 𝐵 ) = ( 𝐵 ∨ℋ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 17 |
13 16
|
eqtri |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ 𝐵 ) = ( 𝐵 ∨ℋ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 18 |
2 1
|
pjoml4i |
⊢ ( 𝐵 ∨ℋ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ) = ( 𝐵 ∨ℋ 𝐴 ) |
| 19 |
2 1
|
chjcomi |
⊢ ( 𝐵 ∨ℋ 𝐴 ) = ( 𝐴 ∨ℋ 𝐵 ) |
| 20 |
18 19
|
eqtri |
⊢ ( 𝐵 ∨ℋ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ) = ( 𝐴 ∨ℋ 𝐵 ) |
| 21 |
17 20
|
eqtri |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) |
| 22 |
21
|
eqeq2i |
⊢ ( ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) +ℋ 𝐵 ) = ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ 𝐵 ) ↔ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ) |
| 23 |
|
inss1 |
⊢ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ 𝐴 |
| 24 |
9
|
chshii |
⊢ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∈ Sℋ |
| 25 |
1
|
chshii |
⊢ 𝐴 ∈ Sℋ |
| 26 |
2
|
chshii |
⊢ 𝐵 ∈ Sℋ |
| 27 |
24 25 26
|
shlessi |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ 𝐴 → ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) +ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) |
| 28 |
23 27
|
ax-mp |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) +ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) |
| 29 |
|
sseq1 |
⊢ ( ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) → ( ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) +ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ↔ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) ) |
| 30 |
28 29
|
mpbii |
⊢ ( ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) → ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) |
| 31 |
22 30
|
sylbi |
⊢ ( ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) +ℋ 𝐵 ) = ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ 𝐵 ) → ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) |
| 32 |
10 31
|
syl |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) |
| 33 |
6 32
|
sylbi |
⊢ ( 𝐴 𝐶ℋ 𝐵 → ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) |
| 34 |
1 2
|
chsleji |
⊢ ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| 35 |
33 34
|
jctil |
⊢ ( 𝐴 𝐶ℋ 𝐵 → ( ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) ) |
| 36 |
|
eqss |
⊢ ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ↔ ( ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) ) |
| 37 |
35 36
|
sylibr |
⊢ ( 𝐴 𝐶ℋ 𝐵 → ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ) |