Step |
Hyp |
Ref |
Expression |
1 |
|
osum.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
osum.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
1 2
|
cmcm2i |
⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐴 𝐶ℋ ( ⊥ ‘ 𝐵 ) ) |
4 |
2
|
choccli |
⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
5 |
1 4
|
cmbr4i |
⊢ ( 𝐴 𝐶ℋ ( ⊥ ‘ 𝐵 ) ↔ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ ( ⊥ ‘ 𝐵 ) ) |
6 |
3 5
|
bitri |
⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ ( ⊥ ‘ 𝐵 ) ) |
7 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
8 |
7 4
|
chjcli |
⊢ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ |
9 |
1 8
|
chincli |
⊢ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∈ Cℋ |
10 |
9 2
|
osumi |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ ( ⊥ ‘ 𝐵 ) → ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) +ℋ 𝐵 ) = ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ 𝐵 ) ) |
11 |
7 4
|
chjcomi |
⊢ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) = ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) |
12 |
11
|
ineq2i |
⊢ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) = ( 𝐴 ∩ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) |
13 |
12
|
oveq1i |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ 𝐵 ) = ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ∨ℋ 𝐵 ) |
14 |
4 7
|
chjcli |
⊢ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ∈ Cℋ |
15 |
1 14
|
chincli |
⊢ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ∈ Cℋ |
16 |
15 2
|
chjcomi |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ∨ℋ 𝐵 ) = ( 𝐵 ∨ℋ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ) |
17 |
13 16
|
eqtri |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ 𝐵 ) = ( 𝐵 ∨ℋ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ) |
18 |
2 1
|
pjoml4i |
⊢ ( 𝐵 ∨ℋ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ) = ( 𝐵 ∨ℋ 𝐴 ) |
19 |
2 1
|
chjcomi |
⊢ ( 𝐵 ∨ℋ 𝐴 ) = ( 𝐴 ∨ℋ 𝐵 ) |
20 |
18 19
|
eqtri |
⊢ ( 𝐵 ∨ℋ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐵 ) ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ) = ( 𝐴 ∨ℋ 𝐵 ) |
21 |
17 20
|
eqtri |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) |
22 |
21
|
eqeq2i |
⊢ ( ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) +ℋ 𝐵 ) = ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ 𝐵 ) ↔ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ) |
23 |
|
inss1 |
⊢ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ 𝐴 |
24 |
9
|
chshii |
⊢ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∈ Sℋ |
25 |
1
|
chshii |
⊢ 𝐴 ∈ Sℋ |
26 |
2
|
chshii |
⊢ 𝐵 ∈ Sℋ |
27 |
24 25 26
|
shlessi |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ 𝐴 → ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) +ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) |
28 |
23 27
|
ax-mp |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) +ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) |
29 |
|
sseq1 |
⊢ ( ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) → ( ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) +ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ↔ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) ) |
30 |
28 29
|
mpbii |
⊢ ( ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) → ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) |
31 |
22 30
|
sylbi |
⊢ ( ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) +ℋ 𝐵 ) = ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ 𝐵 ) → ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) |
32 |
10 31
|
syl |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ⊆ ( ⊥ ‘ 𝐵 ) → ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) |
33 |
6 32
|
sylbi |
⊢ ( 𝐴 𝐶ℋ 𝐵 → ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) |
34 |
1 2
|
chsleji |
⊢ ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
35 |
33 34
|
jctil |
⊢ ( 𝐴 𝐶ℋ 𝐵 → ( ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) ) |
36 |
|
eqss |
⊢ ( ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ↔ ( ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) ) ) |
37 |
35 36
|
sylibr |
⊢ ( 𝐴 𝐶ℋ 𝐵 → ( 𝐴 +ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) ) |