Metamath Proof Explorer


Theorem osumcori

Description: Corollary of osumi . (Contributed by NM, 5-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses osum.1 𝐴C
osum.2 𝐵C
Assertion osumcori ( ( 𝐴𝐵 ) + ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( 𝐴𝐵 ) ∨ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 osum.1 𝐴C
2 osum.2 𝐵C
3 inss2 ( 𝐴𝐵 ) ⊆ 𝐵
4 1 choccli ( ⊥ ‘ 𝐴 ) ∈ C
5 2 4 chub2i 𝐵 ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 )
6 3 5 sstri ( 𝐴𝐵 ) ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 )
7 1 2 chdmm3i ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 )
8 6 7 sseqtrri ( 𝐴𝐵 ) ⊆ ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) )
9 1 2 chincli ( 𝐴𝐵 ) ∈ C
10 2 choccli ( ⊥ ‘ 𝐵 ) ∈ C
11 1 10 chincli ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ∈ C
12 9 11 osumi ( ( 𝐴𝐵 ) ⊆ ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) → ( ( 𝐴𝐵 ) + ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( 𝐴𝐵 ) ∨ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) )
13 8 12 ax-mp ( ( 𝐴𝐵 ) + ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( 𝐴𝐵 ) ∨ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) )