Metamath Proof Explorer


Theorem oteq1

Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015)

Ref Expression
Assertion oteq1 ( 𝐴 = 𝐵 → ⟨ 𝐴 , 𝐶 , 𝐷 ⟩ = ⟨ 𝐵 , 𝐶 , 𝐷 ⟩ )

Proof

Step Hyp Ref Expression
1 opeq1 ( 𝐴 = 𝐵 → ⟨ 𝐴 , 𝐶 ⟩ = ⟨ 𝐵 , 𝐶 ⟩ )
2 1 opeq1d ( 𝐴 = 𝐵 → ⟨ ⟨ 𝐴 , 𝐶 ⟩ , 𝐷 ⟩ = ⟨ ⟨ 𝐵 , 𝐶 ⟩ , 𝐷 ⟩ )
3 df-ot 𝐴 , 𝐶 , 𝐷 ⟩ = ⟨ ⟨ 𝐴 , 𝐶 ⟩ , 𝐷
4 df-ot 𝐵 , 𝐶 , 𝐷 ⟩ = ⟨ ⟨ 𝐵 , 𝐶 ⟩ , 𝐷
5 2 3 4 3eqtr4g ( 𝐴 = 𝐵 → ⟨ 𝐴 , 𝐶 , 𝐷 ⟩ = ⟨ 𝐵 , 𝐶 , 𝐷 ⟩ )