Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | oteq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
oteq123d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | ||
oteq123d.3 | ⊢ ( 𝜑 → 𝐸 = 𝐹 ) | ||
Assertion | oteq123d | ⊢ ( 𝜑 → 〈 𝐴 , 𝐶 , 𝐸 〉 = 〈 𝐵 , 𝐷 , 𝐹 〉 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oteq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
2 | oteq123d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | |
3 | oteq123d.3 | ⊢ ( 𝜑 → 𝐸 = 𝐹 ) | |
4 | 1 | oteq1d | ⊢ ( 𝜑 → 〈 𝐴 , 𝐶 , 𝐸 〉 = 〈 𝐵 , 𝐶 , 𝐸 〉 ) |
5 | 2 | oteq2d | ⊢ ( 𝜑 → 〈 𝐵 , 𝐶 , 𝐸 〉 = 〈 𝐵 , 𝐷 , 𝐸 〉 ) |
6 | 3 | oteq3d | ⊢ ( 𝜑 → 〈 𝐵 , 𝐷 , 𝐸 〉 = 〈 𝐵 , 𝐷 , 𝐹 〉 ) |
7 | 4 5 6 | 3eqtrd | ⊢ ( 𝜑 → 〈 𝐴 , 𝐶 , 𝐸 〉 = 〈 𝐵 , 𝐷 , 𝐹 〉 ) |