Metamath Proof Explorer


Theorem oteq123d

Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses oteq1d.1 ( 𝜑𝐴 = 𝐵 )
oteq123d.2 ( 𝜑𝐶 = 𝐷 )
oteq123d.3 ( 𝜑𝐸 = 𝐹 )
Assertion oteq123d ( 𝜑 → ⟨ 𝐴 , 𝐶 , 𝐸 ⟩ = ⟨ 𝐵 , 𝐷 , 𝐹 ⟩ )

Proof

Step Hyp Ref Expression
1 oteq1d.1 ( 𝜑𝐴 = 𝐵 )
2 oteq123d.2 ( 𝜑𝐶 = 𝐷 )
3 oteq123d.3 ( 𝜑𝐸 = 𝐹 )
4 1 oteq1d ( 𝜑 → ⟨ 𝐴 , 𝐶 , 𝐸 ⟩ = ⟨ 𝐵 , 𝐶 , 𝐸 ⟩ )
5 2 oteq2d ( 𝜑 → ⟨ 𝐵 , 𝐶 , 𝐸 ⟩ = ⟨ 𝐵 , 𝐷 , 𝐸 ⟩ )
6 3 oteq3d ( 𝜑 → ⟨ 𝐵 , 𝐷 , 𝐸 ⟩ = ⟨ 𝐵 , 𝐷 , 𝐹 ⟩ )
7 4 5 6 3eqtrd ( 𝜑 → ⟨ 𝐴 , 𝐶 , 𝐸 ⟩ = ⟨ 𝐵 , 𝐷 , 𝐹 ⟩ )