Metamath Proof Explorer


Theorem oteq2

Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015)

Ref Expression
Assertion oteq2 ( 𝐴 = 𝐵 → ⟨ 𝐶 , 𝐴 , 𝐷 ⟩ = ⟨ 𝐶 , 𝐵 , 𝐷 ⟩ )

Proof

Step Hyp Ref Expression
1 opeq2 ( 𝐴 = 𝐵 → ⟨ 𝐶 , 𝐴 ⟩ = ⟨ 𝐶 , 𝐵 ⟩ )
2 1 opeq1d ( 𝐴 = 𝐵 → ⟨ ⟨ 𝐶 , 𝐴 ⟩ , 𝐷 ⟩ = ⟨ ⟨ 𝐶 , 𝐵 ⟩ , 𝐷 ⟩ )
3 df-ot 𝐶 , 𝐴 , 𝐷 ⟩ = ⟨ ⟨ 𝐶 , 𝐴 ⟩ , 𝐷
4 df-ot 𝐶 , 𝐵 , 𝐷 ⟩ = ⟨ ⟨ 𝐶 , 𝐵 ⟩ , 𝐷
5 2 3 4 3eqtr4g ( 𝐴 = 𝐵 → ⟨ 𝐶 , 𝐴 , 𝐷 ⟩ = ⟨ 𝐶 , 𝐵 , 𝐷 ⟩ )