Metamath Proof Explorer


Theorem oteq3

Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015)

Ref Expression
Assertion oteq3 ( 𝐴 = 𝐵 → ⟨ 𝐶 , 𝐷 , 𝐴 ⟩ = ⟨ 𝐶 , 𝐷 , 𝐵 ⟩ )

Proof

Step Hyp Ref Expression
1 opeq2 ( 𝐴 = 𝐵 → ⟨ ⟨ 𝐶 , 𝐷 ⟩ , 𝐴 ⟩ = ⟨ ⟨ 𝐶 , 𝐷 ⟩ , 𝐵 ⟩ )
2 df-ot 𝐶 , 𝐷 , 𝐴 ⟩ = ⟨ ⟨ 𝐶 , 𝐷 ⟩ , 𝐴
3 df-ot 𝐶 , 𝐷 , 𝐵 ⟩ = ⟨ ⟨ 𝐶 , 𝐷 ⟩ , 𝐵
4 1 2 3 3eqtr4g ( 𝐴 = 𝐵 → ⟨ 𝐶 , 𝐷 , 𝐴 ⟩ = ⟨ 𝐶 , 𝐷 , 𝐵 ⟩ )