Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oteq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| Assertion | oteq3d | ⊢ ( 𝜑 → 〈 𝐶 , 𝐷 , 𝐴 〉 = 〈 𝐶 , 𝐷 , 𝐵 〉 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oteq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | oteq3 | ⊢ ( 𝐴 = 𝐵 → 〈 𝐶 , 𝐷 , 𝐴 〉 = 〈 𝐶 , 𝐷 , 𝐵 〉 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → 〈 𝐶 , 𝐷 , 𝐴 〉 = 〈 𝐶 , 𝐷 , 𝐵 〉 ) |