Description: Equivalence of existence implied by equality of ordered triples. (Contributed by NM, 26-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | oteqex2 | ⊢ ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ = ⟨ ⟨ 𝑅 , 𝑆 ⟩ , 𝑇 ⟩ → ( 𝐶 ∈ V ↔ 𝑇 ∈ V ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeqex | ⊢ ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ = ⟨ ⟨ 𝑅 , 𝑆 ⟩ , 𝑇 ⟩ → ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ V ∧ 𝐶 ∈ V ) ↔ ( ⟨ 𝑅 , 𝑆 ⟩ ∈ V ∧ 𝑇 ∈ V ) ) ) | |
2 | opex | ⊢ ⟨ 𝐴 , 𝐵 ⟩ ∈ V | |
3 | 2 | biantrur | ⊢ ( 𝐶 ∈ V ↔ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ V ∧ 𝐶 ∈ V ) ) |
4 | opex | ⊢ ⟨ 𝑅 , 𝑆 ⟩ ∈ V | |
5 | 4 | biantrur | ⊢ ( 𝑇 ∈ V ↔ ( ⟨ 𝑅 , 𝑆 ⟩ ∈ V ∧ 𝑇 ∈ V ) ) |
6 | 1 3 5 | 3bitr4g | ⊢ ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ = ⟨ ⟨ 𝑅 , 𝑆 ⟩ , 𝑇 ⟩ → ( 𝐶 ∈ V ↔ 𝑇 ∈ V ) ) |