Metamath Proof Explorer


Theorem oteqex2

Description: Equivalence of existence implied by equality of ordered triples. (Contributed by NM, 26-Apr-2015)

Ref Expression
Assertion oteqex2 ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ = ⟨ ⟨ 𝑅 , 𝑆 ⟩ , 𝑇 ⟩ → ( 𝐶 ∈ V ↔ 𝑇 ∈ V ) )

Proof

Step Hyp Ref Expression
1 opeqex ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ = ⟨ ⟨ 𝑅 , 𝑆 ⟩ , 𝑇 ⟩ → ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ V ∧ 𝐶 ∈ V ) ↔ ( ⟨ 𝑅 , 𝑆 ⟩ ∈ V ∧ 𝑇 ∈ V ) ) )
2 opex 𝐴 , 𝐵 ⟩ ∈ V
3 2 biantrur ( 𝐶 ∈ V ↔ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ V ∧ 𝐶 ∈ V ) )
4 opex 𝑅 , 𝑆 ⟩ ∈ V
5 4 biantrur ( 𝑇 ∈ V ↔ ( ⟨ 𝑅 , 𝑆 ⟩ ∈ V ∧ 𝑇 ∈ V ) )
6 1 3 5 3bitr4g ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ = ⟨ ⟨ 𝑅 , 𝑆 ⟩ , 𝑇 ⟩ → ( 𝐶 ∈ V ↔ 𝑇 ∈ V ) )