Metamath Proof Explorer


Theorem otpsstr

Description: Functionality of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015) (Revised by AV, 9-Sep-2021)

Ref Expression
Hypothesis otpsstr.w 𝐾 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ , ⟨ ( le ‘ ndx ) , ⟩ }
Assertion otpsstr 𝐾 Struct ⟨ 1 , 1 0 ⟩

Proof

Step Hyp Ref Expression
1 otpsstr.w 𝐾 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ , ⟨ ( le ‘ ndx ) , ⟩ }
2 1nn 1 ∈ ℕ
3 basendx ( Base ‘ ndx ) = 1
4 1lt9 1 < 9
5 9nn 9 ∈ ℕ
6 tsetndx ( TopSet ‘ ndx ) = 9
7 9lt10 9 < 1 0
8 10nn 1 0 ∈ ℕ
9 plendx ( le ‘ ndx ) = 1 0
10 2 3 4 5 6 7 8 9 strle3 { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ , ⟨ ( le ‘ ndx ) , ⟩ } Struct ⟨ 1 , 1 0 ⟩
11 1 10 eqbrtri 𝐾 Struct ⟨ 1 , 1 0 ⟩