Metamath Proof Explorer


Theorem otsndisj

Description: The singletons consisting of ordered triples which have distinct third components are disjoint. (Contributed by Alexander van der Vekens, 10-Mar-2018)

Ref Expression
Assertion otsndisj ( ( 𝐴𝑋𝐵𝑌 ) → Disj 𝑐𝑉 { ⟨ 𝐴 , 𝐵 , 𝑐 ⟩ } )

Proof

Step Hyp Ref Expression
1 otthg ( ( 𝐴𝑋𝐵𝑌𝑐𝑉 ) → ( ⟨ 𝐴 , 𝐵 , 𝑐 ⟩ = ⟨ 𝐴 , 𝐵 , 𝑑 ⟩ ↔ ( 𝐴 = 𝐴𝐵 = 𝐵𝑐 = 𝑑 ) ) )
2 1 3expa ( ( ( 𝐴𝑋𝐵𝑌 ) ∧ 𝑐𝑉 ) → ( ⟨ 𝐴 , 𝐵 , 𝑐 ⟩ = ⟨ 𝐴 , 𝐵 , 𝑑 ⟩ ↔ ( 𝐴 = 𝐴𝐵 = 𝐵𝑐 = 𝑑 ) ) )
3 simp3 ( ( 𝐴 = 𝐴𝐵 = 𝐵𝑐 = 𝑑 ) → 𝑐 = 𝑑 )
4 2 3 syl6bi ( ( ( 𝐴𝑋𝐵𝑌 ) ∧ 𝑐𝑉 ) → ( ⟨ 𝐴 , 𝐵 , 𝑐 ⟩ = ⟨ 𝐴 , 𝐵 , 𝑑 ⟩ → 𝑐 = 𝑑 ) )
5 4 con3rr3 ( ¬ 𝑐 = 𝑑 → ( ( ( 𝐴𝑋𝐵𝑌 ) ∧ 𝑐𝑉 ) → ¬ ⟨ 𝐴 , 𝐵 , 𝑐 ⟩ = ⟨ 𝐴 , 𝐵 , 𝑑 ⟩ ) )
6 5 imp ( ( ¬ 𝑐 = 𝑑 ∧ ( ( 𝐴𝑋𝐵𝑌 ) ∧ 𝑐𝑉 ) ) → ¬ ⟨ 𝐴 , 𝐵 , 𝑐 ⟩ = ⟨ 𝐴 , 𝐵 , 𝑑 ⟩ )
7 6 neqned ( ( ¬ 𝑐 = 𝑑 ∧ ( ( 𝐴𝑋𝐵𝑌 ) ∧ 𝑐𝑉 ) ) → ⟨ 𝐴 , 𝐵 , 𝑐 ⟩ ≠ ⟨ 𝐴 , 𝐵 , 𝑑 ⟩ )
8 disjsn2 ( ⟨ 𝐴 , 𝐵 , 𝑐 ⟩ ≠ ⟨ 𝐴 , 𝐵 , 𝑑 ⟩ → ( { ⟨ 𝐴 , 𝐵 , 𝑐 ⟩ } ∩ { ⟨ 𝐴 , 𝐵 , 𝑑 ⟩ } ) = ∅ )
9 7 8 syl ( ( ¬ 𝑐 = 𝑑 ∧ ( ( 𝐴𝑋𝐵𝑌 ) ∧ 𝑐𝑉 ) ) → ( { ⟨ 𝐴 , 𝐵 , 𝑐 ⟩ } ∩ { ⟨ 𝐴 , 𝐵 , 𝑑 ⟩ } ) = ∅ )
10 9 expcom ( ( ( 𝐴𝑋𝐵𝑌 ) ∧ 𝑐𝑉 ) → ( ¬ 𝑐 = 𝑑 → ( { ⟨ 𝐴 , 𝐵 , 𝑐 ⟩ } ∩ { ⟨ 𝐴 , 𝐵 , 𝑑 ⟩ } ) = ∅ ) )
11 10 orrd ( ( ( 𝐴𝑋𝐵𝑌 ) ∧ 𝑐𝑉 ) → ( 𝑐 = 𝑑 ∨ ( { ⟨ 𝐴 , 𝐵 , 𝑐 ⟩ } ∩ { ⟨ 𝐴 , 𝐵 , 𝑑 ⟩ } ) = ∅ ) )
12 11 adantrr ( ( ( 𝐴𝑋𝐵𝑌 ) ∧ ( 𝑐𝑉𝑑𝑉 ) ) → ( 𝑐 = 𝑑 ∨ ( { ⟨ 𝐴 , 𝐵 , 𝑐 ⟩ } ∩ { ⟨ 𝐴 , 𝐵 , 𝑑 ⟩ } ) = ∅ ) )
13 12 ralrimivva ( ( 𝐴𝑋𝐵𝑌 ) → ∀ 𝑐𝑉𝑑𝑉 ( 𝑐 = 𝑑 ∨ ( { ⟨ 𝐴 , 𝐵 , 𝑐 ⟩ } ∩ { ⟨ 𝐴 , 𝐵 , 𝑑 ⟩ } ) = ∅ ) )
14 oteq3 ( 𝑐 = 𝑑 → ⟨ 𝐴 , 𝐵 , 𝑐 ⟩ = ⟨ 𝐴 , 𝐵 , 𝑑 ⟩ )
15 14 sneqd ( 𝑐 = 𝑑 → { ⟨ 𝐴 , 𝐵 , 𝑐 ⟩ } = { ⟨ 𝐴 , 𝐵 , 𝑑 ⟩ } )
16 15 disjor ( Disj 𝑐𝑉 { ⟨ 𝐴 , 𝐵 , 𝑐 ⟩ } ↔ ∀ 𝑐𝑉𝑑𝑉 ( 𝑐 = 𝑑 ∨ ( { ⟨ 𝐴 , 𝐵 , 𝑐 ⟩ } ∩ { ⟨ 𝐴 , 𝐵 , 𝑑 ⟩ } ) = ∅ ) )
17 13 16 sylibr ( ( 𝐴𝑋𝐵𝑌 ) → Disj 𝑐𝑉 { ⟨ 𝐴 , 𝐵 , 𝑐 ⟩ } )