Metamath Proof Explorer


Theorem otth

Description: Ordered triple theorem. (Contributed by NM, 25-Sep-2014) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypotheses otth.1 𝐴 ∈ V
otth.2 𝐵 ∈ V
otth.3 𝑅 ∈ V
Assertion otth ( ⟨ 𝐴 , 𝐵 , 𝑅 ⟩ = ⟨ 𝐶 , 𝐷 , 𝑆 ⟩ ↔ ( 𝐴 = 𝐶𝐵 = 𝐷𝑅 = 𝑆 ) )

Proof

Step Hyp Ref Expression
1 otth.1 𝐴 ∈ V
2 otth.2 𝐵 ∈ V
3 otth.3 𝑅 ∈ V
4 df-ot 𝐴 , 𝐵 , 𝑅 ⟩ = ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝑅
5 df-ot 𝐶 , 𝐷 , 𝑆 ⟩ = ⟨ ⟨ 𝐶 , 𝐷 ⟩ , 𝑆
6 4 5 eqeq12i ( ⟨ 𝐴 , 𝐵 , 𝑅 ⟩ = ⟨ 𝐶 , 𝐷 , 𝑆 ⟩ ↔ ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝑅 ⟩ = ⟨ ⟨ 𝐶 , 𝐷 ⟩ , 𝑆 ⟩ )
7 1 2 3 otth2 ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝑅 ⟩ = ⟨ ⟨ 𝐶 , 𝐷 ⟩ , 𝑆 ⟩ ↔ ( 𝐴 = 𝐶𝐵 = 𝐷𝑅 = 𝑆 ) )
8 6 7 bitri ( ⟨ 𝐴 , 𝐵 , 𝑅 ⟩ = ⟨ 𝐶 , 𝐷 , 𝑆 ⟩ ↔ ( 𝐴 = 𝐶𝐵 = 𝐷𝑅 = 𝑆 ) )