Metamath Proof Explorer


Theorem otth2

Description: Ordered triple theorem, with triple expressed with ordered pairs. (Contributed by NM, 1-May-1995) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypotheses otth.1 𝐴 ∈ V
otth.2 𝐵 ∈ V
otth.3 𝑅 ∈ V
Assertion otth2 ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝑅 ⟩ = ⟨ ⟨ 𝐶 , 𝐷 ⟩ , 𝑆 ⟩ ↔ ( 𝐴 = 𝐶𝐵 = 𝐷𝑅 = 𝑆 ) )

Proof

Step Hyp Ref Expression
1 otth.1 𝐴 ∈ V
2 otth.2 𝐵 ∈ V
3 otth.3 𝑅 ∈ V
4 1 2 opth ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐶 , 𝐷 ⟩ ↔ ( 𝐴 = 𝐶𝐵 = 𝐷 ) )
5 4 anbi1i ( ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐶 , 𝐷 ⟩ ∧ 𝑅 = 𝑆 ) ↔ ( ( 𝐴 = 𝐶𝐵 = 𝐷 ) ∧ 𝑅 = 𝑆 ) )
6 opex 𝐴 , 𝐵 ⟩ ∈ V
7 6 3 opth ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝑅 ⟩ = ⟨ ⟨ 𝐶 , 𝐷 ⟩ , 𝑆 ⟩ ↔ ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐶 , 𝐷 ⟩ ∧ 𝑅 = 𝑆 ) )
8 df-3an ( ( 𝐴 = 𝐶𝐵 = 𝐷𝑅 = 𝑆 ) ↔ ( ( 𝐴 = 𝐶𝐵 = 𝐷 ) ∧ 𝑅 = 𝑆 ) )
9 5 7 8 3bitr4i ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝑅 ⟩ = ⟨ ⟨ 𝐶 , 𝐷 ⟩ , 𝑆 ⟩ ↔ ( 𝐴 = 𝐶𝐵 = 𝐷𝑅 = 𝑆 ) )