Metamath Proof Explorer


Theorem otthg

Description: Ordered triple theorem, closed form. (Contributed by Alexander van der Vekens, 10-Mar-2018)

Ref Expression
Assertion otthg ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) → ( ⟨ 𝐴 , 𝐵 , 𝐶 ⟩ = ⟨ 𝐷 , 𝐸 , 𝐹 ⟩ ↔ ( 𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 df-ot 𝐴 , 𝐵 , 𝐶 ⟩ = ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶
2 df-ot 𝐷 , 𝐸 , 𝐹 ⟩ = ⟨ ⟨ 𝐷 , 𝐸 ⟩ , 𝐹
3 1 2 eqeq12i ( ⟨ 𝐴 , 𝐵 , 𝐶 ⟩ = ⟨ 𝐷 , 𝐸 , 𝐹 ⟩ ↔ ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ = ⟨ ⟨ 𝐷 , 𝐸 ⟩ , 𝐹 ⟩ )
4 opex 𝐴 , 𝐵 ⟩ ∈ V
5 opthg ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ V ∧ 𝐶𝑊 ) → ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ = ⟨ ⟨ 𝐷 , 𝐸 ⟩ , 𝐹 ⟩ ↔ ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐷 , 𝐸 ⟩ ∧ 𝐶 = 𝐹 ) ) )
6 4 5 mpan ( 𝐶𝑊 → ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ = ⟨ ⟨ 𝐷 , 𝐸 ⟩ , 𝐹 ⟩ ↔ ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐷 , 𝐸 ⟩ ∧ 𝐶 = 𝐹 ) ) )
7 opthg ( ( 𝐴𝑈𝐵𝑉 ) → ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐷 , 𝐸 ⟩ ↔ ( 𝐴 = 𝐷𝐵 = 𝐸 ) ) )
8 7 anbi1d ( ( 𝐴𝑈𝐵𝑉 ) → ( ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐷 , 𝐸 ⟩ ∧ 𝐶 = 𝐹 ) ↔ ( ( 𝐴 = 𝐷𝐵 = 𝐸 ) ∧ 𝐶 = 𝐹 ) ) )
9 df-3an ( ( 𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹 ) ↔ ( ( 𝐴 = 𝐷𝐵 = 𝐸 ) ∧ 𝐶 = 𝐹 ) )
10 8 9 bitr4di ( ( 𝐴𝑈𝐵𝑉 ) → ( ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐷 , 𝐸 ⟩ ∧ 𝐶 = 𝐹 ) ↔ ( 𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹 ) ) )
11 6 10 sylan9bbr ( ( ( 𝐴𝑈𝐵𝑉 ) ∧ 𝐶𝑊 ) → ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ = ⟨ ⟨ 𝐷 , 𝐸 ⟩ , 𝐹 ⟩ ↔ ( 𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹 ) ) )
12 11 3impa ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) → ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ = ⟨ ⟨ 𝐷 , 𝐸 ⟩ , 𝐹 ⟩ ↔ ( 𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹 ) ) )
13 3 12 bitrid ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) → ( ⟨ 𝐴 , 𝐵 , 𝐶 ⟩ = ⟨ 𝐷 , 𝐸 , 𝐹 ⟩ ↔ ( 𝐴 = 𝐷𝐵 = 𝐸𝐶 = 𝐹 ) ) )