| Step |
Hyp |
Ref |
Expression |
| 1 |
|
outpasch.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
outpasch.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 3 |
|
outpasch.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 4 |
|
outpasch.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
outpasch.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 6 |
|
outpasch.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 7 |
|
outpasch.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 8 |
|
outpasch.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑃 ) |
| 9 |
|
outpasch.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝑃 ) |
| 10 |
|
outpasch.1 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 𝐼 𝑅 ) ) |
| 11 |
|
outpasch.2 |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝐵 𝐼 𝐶 ) ) |
| 12 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) → 𝐴 ∈ 𝑃 ) |
| 13 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝑥 = 𝐴 ) → 𝑥 = 𝐴 ) |
| 14 |
13
|
eleq1d |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝑥 = 𝐴 ) → ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ↔ 𝐴 ∈ ( 𝐴 𝐼 𝐵 ) ) ) |
| 15 |
13
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝑥 = 𝐴 ) → ( 𝑅 𝐼 𝑥 ) = ( 𝑅 𝐼 𝐴 ) ) |
| 16 |
15
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝑥 = 𝐴 ) → ( 𝑄 ∈ ( 𝑅 𝐼 𝑥 ) ↔ 𝑄 ∈ ( 𝑅 𝐼 𝐴 ) ) ) |
| 17 |
14 16
|
anbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝑥 = 𝐴 ) → ( ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑄 ∈ ( 𝑅 𝐼 𝑥 ) ) ↔ ( 𝐴 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑄 ∈ ( 𝑅 𝐼 𝐴 ) ) ) ) |
| 18 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
| 19 |
1 18 2 4 5 6
|
tgbtwntriv1 |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 𝐼 𝐵 ) ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) → 𝐴 ∈ ( 𝐴 𝐼 𝐵 ) ) |
| 21 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) → 𝐺 ∈ TarskiG ) |
| 22 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) → 𝑅 ∈ 𝑃 ) |
| 23 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) → 𝑄 ∈ 𝑃 ) |
| 24 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) → 𝐶 ∈ 𝑃 ) |
| 25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) → 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) |
| 26 |
1 18 2 4 5 7 8 10
|
tgbtwncom |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝑅 𝐼 𝐴 ) ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) → 𝐶 ∈ ( 𝑅 𝐼 𝐴 ) ) |
| 28 |
1 18 2 21 22 23 24 12 25 27
|
tgbtwnexch |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) → 𝑄 ∈ ( 𝑅 𝐼 𝐴 ) ) |
| 29 |
20 28
|
jca |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) → ( 𝐴 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑄 ∈ ( 𝑅 𝐼 𝐴 ) ) ) |
| 30 |
12 17 29
|
rspcedvd |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) → ∃ 𝑥 ∈ 𝑃 ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑄 ∈ ( 𝑅 𝐼 𝑥 ) ) ) |
| 31 |
30
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) → ∃ 𝑥 ∈ 𝑃 ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑄 ∈ ( 𝑅 𝐼 𝑥 ) ) ) |
| 32 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) → 𝐵 ∈ 𝑃 ) |
| 33 |
|
eleq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ↔ 𝐵 ∈ ( 𝐴 𝐼 𝐵 ) ) ) |
| 34 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝑅 𝐼 𝑥 ) = ( 𝑅 𝐼 𝐵 ) ) |
| 35 |
34
|
eleq2d |
⊢ ( 𝑥 = 𝐵 → ( 𝑄 ∈ ( 𝑅 𝐼 𝑥 ) ↔ 𝑄 ∈ ( 𝑅 𝐼 𝐵 ) ) ) |
| 36 |
33 35
|
anbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑄 ∈ ( 𝑅 𝐼 𝑥 ) ) ↔ ( 𝐵 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑄 ∈ ( 𝑅 𝐼 𝐵 ) ) ) ) |
| 37 |
36
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝑥 = 𝐵 ) → ( ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑄 ∈ ( 𝑅 𝐼 𝑥 ) ) ↔ ( 𝐵 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑄 ∈ ( 𝑅 𝐼 𝐵 ) ) ) ) |
| 38 |
1 18 2 4 5 6
|
tgbtwntriv2 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐵 ) ) |
| 39 |
38
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝐵 ) ) |
| 40 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝑅 ∈ ( 𝑄 𝐼 𝐶 ) ) → 𝐺 ∈ TarskiG ) |
| 41 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝑅 ∈ ( 𝑄 𝐼 𝐶 ) ) → 𝐶 ∈ 𝑃 ) |
| 42 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝑅 ∈ ( 𝑄 𝐼 𝐶 ) ) → 𝑅 ∈ 𝑃 ) |
| 43 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝑅 ∈ ( 𝑄 𝐼 𝐶 ) ) → 𝑄 ∈ 𝑃 ) |
| 44 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝑅 ∈ ( 𝑄 𝐼 𝐶 ) ) → 𝐵 ∈ 𝑃 ) |
| 45 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝑅 ∈ ( 𝑄 𝐼 𝐶 ) ) → 𝑅 ∈ ( 𝑄 𝐼 𝐶 ) ) |
| 46 |
1 18 2 40 43 42 41 45
|
tgbtwncom |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝑅 ∈ ( 𝑄 𝐼 𝐶 ) ) → 𝑅 ∈ ( 𝐶 𝐼 𝑄 ) ) |
| 47 |
1 18 2 4 6 9 7 11
|
tgbtwncom |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝐶 𝐼 𝐵 ) ) |
| 48 |
47
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝑅 ∈ ( 𝑄 𝐼 𝐶 ) ) → 𝑄 ∈ ( 𝐶 𝐼 𝐵 ) ) |
| 49 |
1 18 2 40 41 42 43 44 46 48
|
tgbtwnexch3 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝑅 ∈ ( 𝑄 𝐼 𝐶 ) ) → 𝑄 ∈ ( 𝑅 𝐼 𝐵 ) ) |
| 50 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝐶 ∈ ( 𝑄 𝐼 𝑅 ) ) → 𝐺 ∈ TarskiG ) |
| 51 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝐶 ∈ ( 𝑄 𝐼 𝑅 ) ) → 𝐵 ∈ 𝑃 ) |
| 52 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝐶 ∈ ( 𝑄 𝐼 𝑅 ) ) → 𝑄 ∈ 𝑃 ) |
| 53 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝐶 ∈ ( 𝑄 𝐼 𝑅 ) ) → 𝑅 ∈ 𝑃 ) |
| 54 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝐶 ∈ ( 𝑄 𝐼 𝑅 ) ) → 𝐶 ∈ 𝑃 ) |
| 55 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝐶 ∈ ( 𝑄 𝐼 𝑅 ) ) ∧ 𝑄 = 𝐶 ) → 𝑄 = 𝐶 ) |
| 56 |
1 18 2 4 8 7
|
tgbtwntriv2 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝑅 𝐼 𝐶 ) ) |
| 57 |
56
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝐶 ∈ ( 𝑄 𝐼 𝑅 ) ) ∧ 𝑄 = 𝐶 ) → 𝐶 ∈ ( 𝑅 𝐼 𝐶 ) ) |
| 58 |
55 57
|
eqeltrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝐶 ∈ ( 𝑄 𝐼 𝑅 ) ) ∧ 𝑄 = 𝐶 ) → 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) |
| 59 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝐶 ∈ ( 𝑄 𝐼 𝑅 ) ) ∧ 𝑄 = 𝐶 ) → ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) |
| 60 |
58 59
|
pm2.65da |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝐶 ∈ ( 𝑄 𝐼 𝑅 ) ) → ¬ 𝑄 = 𝐶 ) |
| 61 |
60
|
neqned |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝐶 ∈ ( 𝑄 𝐼 𝑅 ) ) → 𝑄 ≠ 𝐶 ) |
| 62 |
11
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝐶 ∈ ( 𝑄 𝐼 𝑅 ) ) → 𝑄 ∈ ( 𝐵 𝐼 𝐶 ) ) |
| 63 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝐶 ∈ ( 𝑄 𝐼 𝑅 ) ) → 𝐶 ∈ ( 𝑄 𝐼 𝑅 ) ) |
| 64 |
1 18 2 50 51 52 54 53 61 62 63
|
tgbtwnouttr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝐶 ∈ ( 𝑄 𝐼 𝑅 ) ) → 𝑄 ∈ ( 𝐵 𝐼 𝑅 ) ) |
| 65 |
1 18 2 50 51 52 53 64
|
tgbtwncom |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) ∧ 𝐶 ∈ ( 𝑄 𝐼 𝑅 ) ) → 𝑄 ∈ ( 𝑅 𝐼 𝐵 ) ) |
| 66 |
1 3 2 4 9 7 8
|
tgcolg |
⊢ ( 𝜑 → ( ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ↔ ( 𝑅 ∈ ( 𝑄 𝐼 𝐶 ) ∨ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝑄 𝐼 𝑅 ) ) ) ) |
| 67 |
66
|
biimpa |
⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) → ( 𝑅 ∈ ( 𝑄 𝐼 𝐶 ) ∨ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝑄 𝐼 𝑅 ) ) ) |
| 68 |
|
3orcoma |
⊢ ( ( 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ∨ 𝑅 ∈ ( 𝑄 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝑄 𝐼 𝑅 ) ) ↔ ( 𝑅 ∈ ( 𝑄 𝐼 𝐶 ) ∨ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝑄 𝐼 𝑅 ) ) ) |
| 69 |
|
3orass |
⊢ ( ( 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ∨ 𝑅 ∈ ( 𝑄 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝑄 𝐼 𝑅 ) ) ↔ ( 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ∨ ( 𝑅 ∈ ( 𝑄 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝑄 𝐼 𝑅 ) ) ) ) |
| 70 |
68 69
|
bitr3i |
⊢ ( ( 𝑅 ∈ ( 𝑄 𝐼 𝐶 ) ∨ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝑄 𝐼 𝑅 ) ) ↔ ( 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ∨ ( 𝑅 ∈ ( 𝑄 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝑄 𝐼 𝑅 ) ) ) ) |
| 71 |
67 70
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) → ( 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ∨ ( 𝑅 ∈ ( 𝑄 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝑄 𝐼 𝑅 ) ) ) ) |
| 72 |
71
|
orcanai |
⊢ ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) → ( 𝑅 ∈ ( 𝑄 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝑄 𝐼 𝑅 ) ) ) |
| 73 |
49 65 72
|
mpjaodan |
⊢ ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) → 𝑄 ∈ ( 𝑅 𝐼 𝐵 ) ) |
| 74 |
39 73
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) → ( 𝐵 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑄 ∈ ( 𝑅 𝐼 𝐵 ) ) ) |
| 75 |
32 37 74
|
rspcedvd |
⊢ ( ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝑄 ∈ ( 𝑅 𝐼 𝐶 ) ) → ∃ 𝑥 ∈ 𝑃 ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑄 ∈ ( 𝑅 𝐼 𝑥 ) ) ) |
| 76 |
31 75
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) → ∃ 𝑥 ∈ 𝑃 ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑄 ∈ ( 𝑅 𝐼 𝑥 ) ) ) |
| 77 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝐵 ∈ 𝑃 ) |
| 78 |
36
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 = 𝐵 ) → ( ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑄 ∈ ( 𝑅 𝐼 𝑥 ) ) ↔ ( 𝐵 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑄 ∈ ( 𝑅 𝐼 𝐵 ) ) ) ) |
| 79 |
38
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝐵 ) ) |
| 80 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝐺 ∈ TarskiG ) |
| 81 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝑅 ∈ 𝑃 ) |
| 82 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝑄 ∈ 𝑃 ) |
| 83 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝐶 ∈ 𝑃 ) |
| 84 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) |
| 85 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) |
| 86 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) → 𝐺 ∈ TarskiG ) |
| 87 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) → 𝑅 ∈ 𝑃 ) |
| 88 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) → 𝑄 ∈ 𝑃 ) |
| 89 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) → 𝐶 ∈ 𝑃 ) |
| 90 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) → ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) |
| 91 |
1 2 3 86 87 88 89 90
|
ncolne1 |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) → 𝑅 ≠ 𝑄 ) |
| 92 |
1 2 3 86 87 88 91
|
tglinerflx2 |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) → 𝑄 ∈ ( 𝑅 𝐿 𝑄 ) ) |
| 93 |
92
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝑄 ∈ ( 𝑅 𝐿 𝑄 ) ) |
| 94 |
1 3 2 86 88 89 87 90
|
ncolcom |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) → ¬ ( 𝑅 ∈ ( 𝐶 𝐿 𝑄 ) ∨ 𝐶 = 𝑄 ) ) |
| 95 |
1 3 2 86 89 88 87 94
|
ncolrot1 |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) → ¬ ( 𝐶 ∈ ( 𝑄 𝐿 𝑅 ) ∨ 𝑄 = 𝑅 ) ) |
| 96 |
1 2 3 86 89 88 87 95
|
ncolne1 |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) → 𝐶 ≠ 𝑄 ) |
| 97 |
96
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝐶 ≠ 𝑄 ) |
| 98 |
47
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝑄 ∈ ( 𝐶 𝐼 𝐵 ) ) |
| 99 |
1 2 3 80 83 82 77 97 98
|
btwnlng3 |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝐵 ∈ ( 𝐶 𝐿 𝑄 ) ) |
| 100 |
1 2 3 80 83 82 97
|
tglinerflx2 |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝑄 ∈ ( 𝐶 𝐿 𝑄 ) ) |
| 101 |
1 2 3 80 81 82 83 82 84 85 93 99 100
|
tglineinteq |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝐵 = 𝑄 ) |
| 102 |
1 18 2 4 8 6
|
tgbtwntriv2 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝑅 𝐼 𝐵 ) ) |
| 103 |
102
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝐵 ∈ ( 𝑅 𝐼 𝐵 ) ) |
| 104 |
101 103
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝑄 ∈ ( 𝑅 𝐼 𝐵 ) ) |
| 105 |
79 104
|
jca |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → ( 𝐵 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑄 ∈ ( 𝑅 𝐼 𝐵 ) ) ) |
| 106 |
77 78 105
|
rspcedvd |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → ∃ 𝑥 ∈ 𝑃 ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑄 ∈ ( 𝑅 𝐼 𝑥 ) ) ) |
| 107 |
|
eleq1 |
⊢ ( 𝑡 = 𝑥 → ( 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ↔ 𝑥 ∈ ( 𝑎 𝐼 𝑏 ) ) ) |
| 108 |
107
|
cbvrexvw |
⊢ ( ∃ 𝑡 ∈ ( 𝑅 𝐿 𝑄 ) 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ↔ ∃ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) 𝑥 ∈ ( 𝑎 𝐼 𝑏 ) ) |
| 109 |
108
|
anbi2i |
⊢ ( ( ( 𝑎 ∈ ( 𝑃 ∖ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑏 ∈ ( 𝑃 ∖ ( 𝑅 𝐿 𝑄 ) ) ) ∧ ∃ 𝑡 ∈ ( 𝑅 𝐿 𝑄 ) 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) ↔ ( ( 𝑎 ∈ ( 𝑃 ∖ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑏 ∈ ( 𝑃 ∖ ( 𝑅 𝐿 𝑄 ) ) ) ∧ ∃ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) 𝑥 ∈ ( 𝑎 𝐼 𝑏 ) ) ) |
| 110 |
109
|
opabbii |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑏 ∈ ( 𝑃 ∖ ( 𝑅 𝐿 𝑄 ) ) ) ∧ ∃ 𝑡 ∈ ( 𝑅 𝐿 𝑄 ) 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑏 ∈ ( 𝑃 ∖ ( 𝑅 𝐿 𝑄 ) ) ) ∧ ∃ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) 𝑥 ∈ ( 𝑎 𝐼 𝑏 ) ) } |
| 111 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝐺 ∈ TarskiG ) |
| 112 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝑅 ∈ 𝑃 ) |
| 113 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝑄 ∈ 𝑃 ) |
| 114 |
91
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝑅 ≠ 𝑄 ) |
| 115 |
1 2 3 111 112 113 114
|
tgelrnln |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → ( 𝑅 𝐿 𝑄 ) ∈ ran 𝐿 ) |
| 116 |
|
eqid |
⊢ ( hlG ‘ 𝐺 ) = ( hlG ‘ 𝐺 ) |
| 117 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝐶 ∈ 𝑃 ) |
| 118 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝐴 ∈ 𝑃 ) |
| 119 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝐵 ∈ 𝑃 ) |
| 120 |
92
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝑄 ∈ ( 𝑅 𝐿 𝑄 ) ) |
| 121 |
1 3 2 86 88 89 87 90
|
ncolrot2 |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) → ¬ ( 𝐶 ∈ ( 𝑅 𝐿 𝑄 ) ∨ 𝑅 = 𝑄 ) ) |
| 122 |
|
pm2.45 |
⊢ ( ¬ ( 𝐶 ∈ ( 𝑅 𝐿 𝑄 ) ∨ 𝑅 = 𝑄 ) → ¬ 𝐶 ∈ ( 𝑅 𝐿 𝑄 ) ) |
| 123 |
121 122
|
syl |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) → ¬ 𝐶 ∈ ( 𝑅 𝐿 𝑄 ) ) |
| 124 |
123
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → ¬ 𝐶 ∈ ( 𝑅 𝐿 𝑄 ) ) |
| 125 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) |
| 126 |
47
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝑄 ∈ ( 𝐶 𝐼 𝐵 ) ) |
| 127 |
1 18 2 110 117 119 120 124 125 126
|
islnoppd |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝐶 { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑏 ∈ ( 𝑃 ∖ ( 𝑅 𝐿 𝑄 ) ) ) ∧ ∃ 𝑡 ∈ ( 𝑅 𝐿 𝑄 ) 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } 𝐵 ) |
| 128 |
1 2 3 86 87 88 91
|
tglinerflx1 |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) → 𝑅 ∈ ( 𝑅 𝐿 𝑄 ) ) |
| 129 |
128
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝑅 ∈ ( 𝑅 𝐿 𝑄 ) ) |
| 130 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝐶 ∈ ( 𝑅 𝐼 𝐴 ) ) |
| 131 |
1 2 3 86 89 87 88 121
|
ncolne1 |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) → 𝐶 ≠ 𝑅 ) |
| 132 |
131
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝐶 ≠ 𝑅 ) |
| 133 |
1 18 2 111 112 117 118 130 132
|
tgbtwnne |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝑅 ≠ 𝐴 ) |
| 134 |
1 2 116 112 118 117 111 118 130 133 132
|
btwnhl1 |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝐶 ( ( hlG ‘ 𝐺 ) ‘ 𝑅 ) 𝐴 ) |
| 135 |
1 18 2 110 3 115 111 116 117 118 119 127 129 134
|
opphl |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → 𝐴 { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑏 ∈ ( 𝑃 ∖ ( 𝑅 𝐿 𝑄 ) ) ) ∧ ∃ 𝑡 ∈ ( 𝑅 𝐿 𝑄 ) 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } 𝐵 ) |
| 136 |
1 18 2 110 118 119
|
islnopp |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → ( 𝐴 { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑏 ∈ ( 𝑃 ∖ ( 𝑅 𝐿 𝑄 ) ) ) ∧ ∃ 𝑡 ∈ ( 𝑅 𝐿 𝑄 ) 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } 𝐵 ↔ ( ( ¬ 𝐴 ∈ ( 𝑅 𝐿 𝑄 ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ ∃ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ) |
| 137 |
135 136
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → ( ( ¬ 𝐴 ∈ ( 𝑅 𝐿 𝑄 ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ ∃ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) ) |
| 138 |
137
|
simprd |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → ∃ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) |
| 139 |
111
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
| 140 |
115
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝑅 𝐿 𝑄 ) ∈ ran 𝐿 ) |
| 141 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) |
| 142 |
1 3 2 139 140 141
|
tglnpt |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝑥 ∈ 𝑃 ) |
| 143 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) |
| 144 |
139
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) ∧ 𝑡 ∈ 𝑃 ) ∧ ( 𝑡 ∈ ( 𝑥 𝐼 𝑅 ) ∧ 𝑡 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝐺 ∈ TarskiG ) |
| 145 |
87
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝑅 ∈ 𝑃 ) |
| 146 |
145
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) ∧ 𝑡 ∈ 𝑃 ) ∧ ( 𝑡 ∈ ( 𝑥 𝐼 𝑅 ) ∧ 𝑡 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝑅 ∈ 𝑃 ) |
| 147 |
88
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) ∧ 𝑡 ∈ 𝑃 ) ∧ ( 𝑡 ∈ ( 𝑥 𝐼 𝑅 ) ∧ 𝑡 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝑄 ∈ 𝑃 ) |
| 148 |
117
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐶 ∈ 𝑃 ) |
| 149 |
148
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) ∧ 𝑡 ∈ 𝑃 ) ∧ ( 𝑡 ∈ ( 𝑥 𝐼 𝑅 ) ∧ 𝑡 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝐶 ∈ 𝑃 ) |
| 150 |
90
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) ∧ 𝑡 ∈ 𝑃 ) ∧ ( 𝑡 ∈ ( 𝑥 𝐼 𝑅 ) ∧ 𝑡 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) |
| 151 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) ∧ 𝑡 ∈ 𝑃 ) ∧ ( 𝑡 ∈ ( 𝑥 𝐼 𝑅 ) ∧ 𝑡 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝑡 ∈ 𝑃 ) |
| 152 |
114
|
ad4antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) ∧ 𝑡 ∈ 𝑃 ) ∧ ( 𝑡 ∈ ( 𝑥 𝐼 𝑅 ) ∧ 𝑡 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝑅 ≠ 𝑄 ) |
| 153 |
142
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) ∧ 𝑡 ∈ 𝑃 ) ∧ ( 𝑡 ∈ ( 𝑥 𝐼 𝑅 ) ∧ 𝑡 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝑥 ∈ 𝑃 ) |
| 154 |
91
|
necomd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) → 𝑄 ≠ 𝑅 ) |
| 155 |
154
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) ∧ 𝑡 ∈ 𝑃 ) ∧ ( 𝑡 ∈ ( 𝑥 𝐼 𝑅 ) ∧ 𝑡 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝑄 ≠ 𝑅 ) |
| 156 |
141
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) ∧ 𝑡 ∈ 𝑃 ) ∧ ( 𝑡 ∈ ( 𝑥 𝐼 𝑅 ) ∧ 𝑡 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) |
| 157 |
1 2 3 144 147 146 153 155 156
|
lncom |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) ∧ 𝑡 ∈ 𝑃 ) ∧ ( 𝑡 ∈ ( 𝑥 𝐼 𝑅 ) ∧ 𝑡 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝑥 ∈ ( 𝑄 𝐿 𝑅 ) ) |
| 158 |
|
simprl |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) ∧ 𝑡 ∈ 𝑃 ) ∧ ( 𝑡 ∈ ( 𝑥 𝐼 𝑅 ) ∧ 𝑡 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝑡 ∈ ( 𝑥 𝐼 𝑅 ) ) |
| 159 |
1 2 3 144 153 147 146 151 157 158
|
coltr3 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) ∧ 𝑡 ∈ 𝑃 ) ∧ ( 𝑡 ∈ ( 𝑥 𝐼 𝑅 ) ∧ 𝑡 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝑡 ∈ ( 𝑄 𝐿 𝑅 ) ) |
| 160 |
1 2 3 144 146 147 151 152 159
|
lncom |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) ∧ 𝑡 ∈ 𝑃 ) ∧ ( 𝑡 ∈ ( 𝑥 𝐼 𝑅 ) ∧ 𝑡 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝑡 ∈ ( 𝑅 𝐿 𝑄 ) ) |
| 161 |
92
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) ∧ 𝑡 ∈ 𝑃 ) ∧ ( 𝑡 ∈ ( 𝑥 𝐼 𝑅 ) ∧ 𝑡 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝑄 ∈ ( 𝑅 𝐿 𝑄 ) ) |
| 162 |
96
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) ∧ 𝑡 ∈ 𝑃 ) ∧ ( 𝑡 ∈ ( 𝑥 𝐼 𝑅 ) ∧ 𝑡 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝐶 ≠ 𝑄 ) |
| 163 |
119
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐵 ∈ 𝑃 ) |
| 164 |
163
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) ∧ 𝑡 ∈ 𝑃 ) ∧ ( 𝑡 ∈ ( 𝑥 𝐼 𝑅 ) ∧ 𝑡 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝐵 ∈ 𝑃 ) |
| 165 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) → 𝐵 ∈ 𝑃 ) |
| 166 |
96
|
necomd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) → 𝑄 ≠ 𝐶 ) |
| 167 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) → 𝑄 ∈ ( 𝐵 𝐼 𝐶 ) ) |
| 168 |
1 2 3 86 88 89 165 166 167
|
btwnlng2 |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) → 𝐵 ∈ ( 𝑄 𝐿 𝐶 ) ) |
| 169 |
168
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) ∧ 𝑡 ∈ 𝑃 ) ∧ ( 𝑡 ∈ ( 𝑥 𝐼 𝑅 ) ∧ 𝑡 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝐵 ∈ ( 𝑄 𝐿 𝐶 ) ) |
| 170 |
|
simprr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) ∧ 𝑡 ∈ 𝑃 ) ∧ ( 𝑡 ∈ ( 𝑥 𝐼 𝑅 ) ∧ 𝑡 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝑡 ∈ ( 𝐶 𝐼 𝐵 ) ) |
| 171 |
1 18 2 144 149 151 164 170
|
tgbtwncom |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) ∧ 𝑡 ∈ 𝑃 ) ∧ ( 𝑡 ∈ ( 𝑥 𝐼 𝑅 ) ∧ 𝑡 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝑡 ∈ ( 𝐵 𝐼 𝐶 ) ) |
| 172 |
1 2 3 144 164 147 149 151 169 171
|
coltr3 |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) ∧ 𝑡 ∈ 𝑃 ) ∧ ( 𝑡 ∈ ( 𝑥 𝐼 𝑅 ) ∧ 𝑡 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝑡 ∈ ( 𝑄 𝐿 𝐶 ) ) |
| 173 |
1 2 3 144 149 147 151 162 172
|
lncom |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) ∧ 𝑡 ∈ 𝑃 ) ∧ ( 𝑡 ∈ ( 𝑥 𝐼 𝑅 ) ∧ 𝑡 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝑡 ∈ ( 𝐶 𝐿 𝑄 ) ) |
| 174 |
1 2 3 86 89 88 96
|
tglinerflx2 |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) → 𝑄 ∈ ( 𝐶 𝐿 𝑄 ) ) |
| 175 |
174
|
ad5antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) ∧ 𝑡 ∈ 𝑃 ) ∧ ( 𝑡 ∈ ( 𝑥 𝐼 𝑅 ) ∧ 𝑡 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝑄 ∈ ( 𝐶 𝐿 𝑄 ) ) |
| 176 |
1 2 3 144 146 147 149 147 150 160 161 173 175
|
tglineinteq |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) ∧ 𝑡 ∈ 𝑃 ) ∧ ( 𝑡 ∈ ( 𝑥 𝐼 𝑅 ) ∧ 𝑡 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝑡 = 𝑄 ) |
| 177 |
1 18 2 144 153 151 146 158
|
tgbtwncom |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) ∧ 𝑡 ∈ 𝑃 ) ∧ ( 𝑡 ∈ ( 𝑥 𝐼 𝑅 ) ∧ 𝑡 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝑡 ∈ ( 𝑅 𝐼 𝑥 ) ) |
| 178 |
176 177
|
eqeltrrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) ∧ 𝑡 ∈ 𝑃 ) ∧ ( 𝑡 ∈ ( 𝑥 𝐼 𝑅 ) ∧ 𝑡 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝑄 ∈ ( 𝑅 𝐼 𝑥 ) ) |
| 179 |
118
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐴 ∈ 𝑃 ) |
| 180 |
1 18 2 139 179 142 163 143
|
tgbtwncom |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝑥 ∈ ( 𝐵 𝐼 𝐴 ) ) |
| 181 |
26
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐶 ∈ ( 𝑅 𝐼 𝐴 ) ) |
| 182 |
1 18 2 139 163 145 179 142 148 180 181
|
axtgpasch |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) → ∃ 𝑡 ∈ 𝑃 ( 𝑡 ∈ ( 𝑥 𝐼 𝑅 ) ∧ 𝑡 ∈ ( 𝐶 𝐼 𝐵 ) ) ) |
| 183 |
178 182
|
r19.29a |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝑄 ∈ ( 𝑅 𝐼 𝑥 ) ) |
| 184 |
142 143 183
|
jca32 |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑄 ∈ ( 𝑅 𝐼 𝑥 ) ) ) ) |
| 185 |
184
|
expl |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → ( ( 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) ∧ 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑄 ∈ ( 𝑅 𝐼 𝑥 ) ) ) ) ) |
| 186 |
185
|
reximdv2 |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → ( ∃ 𝑥 ∈ ( 𝑅 𝐿 𝑄 ) 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) → ∃ 𝑥 ∈ 𝑃 ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑄 ∈ ( 𝑅 𝐼 𝑥 ) ) ) ) |
| 187 |
138 186
|
mpd |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) ∧ ¬ 𝐵 ∈ ( 𝑅 𝐿 𝑄 ) ) → ∃ 𝑥 ∈ 𝑃 ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑄 ∈ ( 𝑅 𝐼 𝑥 ) ) ) |
| 188 |
106 187
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑅 ∈ ( 𝑄 𝐿 𝐶 ) ∨ 𝑄 = 𝐶 ) ) → ∃ 𝑥 ∈ 𝑃 ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑄 ∈ ( 𝑅 𝐼 𝑥 ) ) ) |
| 189 |
76 188
|
pm2.61dan |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑃 ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑄 ∈ ( 𝑅 𝐼 𝑥 ) ) ) |