Metamath Proof Explorer


Theorem ov2gf

Description: The value of an operation class abstraction. A version of ovmpog using bound-variable hypotheses. (Contributed by NM, 17-Aug-2006) (Revised by Mario Carneiro, 19-Dec-2013)

Ref Expression
Hypotheses ov2gf.a 𝑥 𝐴
ov2gf.c 𝑦 𝐴
ov2gf.d 𝑦 𝐵
ov2gf.1 𝑥 𝐺
ov2gf.2 𝑦 𝑆
ov2gf.3 ( 𝑥 = 𝐴𝑅 = 𝐺 )
ov2gf.4 ( 𝑦 = 𝐵𝐺 = 𝑆 )
ov2gf.5 𝐹 = ( 𝑥𝐶 , 𝑦𝐷𝑅 )
Assertion ov2gf ( ( 𝐴𝐶𝐵𝐷𝑆𝐻 ) → ( 𝐴 𝐹 𝐵 ) = 𝑆 )

Proof

Step Hyp Ref Expression
1 ov2gf.a 𝑥 𝐴
2 ov2gf.c 𝑦 𝐴
3 ov2gf.d 𝑦 𝐵
4 ov2gf.1 𝑥 𝐺
5 ov2gf.2 𝑦 𝑆
6 ov2gf.3 ( 𝑥 = 𝐴𝑅 = 𝐺 )
7 ov2gf.4 ( 𝑦 = 𝐵𝐺 = 𝑆 )
8 ov2gf.5 𝐹 = ( 𝑥𝐶 , 𝑦𝐷𝑅 )
9 elex ( 𝑆𝐻𝑆 ∈ V )
10 4 nfel1 𝑥 𝐺 ∈ V
11 nfmpo1 𝑥 ( 𝑥𝐶 , 𝑦𝐷𝑅 )
12 8 11 nfcxfr 𝑥 𝐹
13 nfcv 𝑥 𝑦
14 1 12 13 nfov 𝑥 ( 𝐴 𝐹 𝑦 )
15 14 4 nfeq 𝑥 ( 𝐴 𝐹 𝑦 ) = 𝐺
16 10 15 nfim 𝑥 ( 𝐺 ∈ V → ( 𝐴 𝐹 𝑦 ) = 𝐺 )
17 5 nfel1 𝑦 𝑆 ∈ V
18 nfmpo2 𝑦 ( 𝑥𝐶 , 𝑦𝐷𝑅 )
19 8 18 nfcxfr 𝑦 𝐹
20 2 19 3 nfov 𝑦 ( 𝐴 𝐹 𝐵 )
21 20 5 nfeq 𝑦 ( 𝐴 𝐹 𝐵 ) = 𝑆
22 17 21 nfim 𝑦 ( 𝑆 ∈ V → ( 𝐴 𝐹 𝐵 ) = 𝑆 )
23 6 eleq1d ( 𝑥 = 𝐴 → ( 𝑅 ∈ V ↔ 𝐺 ∈ V ) )
24 oveq1 ( 𝑥 = 𝐴 → ( 𝑥 𝐹 𝑦 ) = ( 𝐴 𝐹 𝑦 ) )
25 24 6 eqeq12d ( 𝑥 = 𝐴 → ( ( 𝑥 𝐹 𝑦 ) = 𝑅 ↔ ( 𝐴 𝐹 𝑦 ) = 𝐺 ) )
26 23 25 imbi12d ( 𝑥 = 𝐴 → ( ( 𝑅 ∈ V → ( 𝑥 𝐹 𝑦 ) = 𝑅 ) ↔ ( 𝐺 ∈ V → ( 𝐴 𝐹 𝑦 ) = 𝐺 ) ) )
27 7 eleq1d ( 𝑦 = 𝐵 → ( 𝐺 ∈ V ↔ 𝑆 ∈ V ) )
28 oveq2 ( 𝑦 = 𝐵 → ( 𝐴 𝐹 𝑦 ) = ( 𝐴 𝐹 𝐵 ) )
29 28 7 eqeq12d ( 𝑦 = 𝐵 → ( ( 𝐴 𝐹 𝑦 ) = 𝐺 ↔ ( 𝐴 𝐹 𝐵 ) = 𝑆 ) )
30 27 29 imbi12d ( 𝑦 = 𝐵 → ( ( 𝐺 ∈ V → ( 𝐴 𝐹 𝑦 ) = 𝐺 ) ↔ ( 𝑆 ∈ V → ( 𝐴 𝐹 𝐵 ) = 𝑆 ) ) )
31 8 ovmpt4g ( ( 𝑥𝐶𝑦𝐷𝑅 ∈ V ) → ( 𝑥 𝐹 𝑦 ) = 𝑅 )
32 31 3expia ( ( 𝑥𝐶𝑦𝐷 ) → ( 𝑅 ∈ V → ( 𝑥 𝐹 𝑦 ) = 𝑅 ) )
33 1 2 3 16 22 26 30 32 vtocl2gaf ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝑆 ∈ V → ( 𝐴 𝐹 𝐵 ) = 𝑆 ) )
34 9 33 syl5 ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝑆𝐻 → ( 𝐴 𝐹 𝐵 ) = 𝑆 ) )
35 34 3impia ( ( 𝐴𝐶𝐵𝐷𝑆𝐻 ) → ( 𝐴 𝐹 𝐵 ) = 𝑆 )