| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ov2gf.a |
⊢ Ⅎ 𝑥 𝐴 |
| 2 |
|
ov2gf.c |
⊢ Ⅎ 𝑦 𝐴 |
| 3 |
|
ov2gf.d |
⊢ Ⅎ 𝑦 𝐵 |
| 4 |
|
ov2gf.1 |
⊢ Ⅎ 𝑥 𝐺 |
| 5 |
|
ov2gf.2 |
⊢ Ⅎ 𝑦 𝑆 |
| 6 |
|
ov2gf.3 |
⊢ ( 𝑥 = 𝐴 → 𝑅 = 𝐺 ) |
| 7 |
|
ov2gf.4 |
⊢ ( 𝑦 = 𝐵 → 𝐺 = 𝑆 ) |
| 8 |
|
ov2gf.5 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) |
| 9 |
|
elex |
⊢ ( 𝑆 ∈ 𝐻 → 𝑆 ∈ V ) |
| 10 |
4
|
nfel1 |
⊢ Ⅎ 𝑥 𝐺 ∈ V |
| 11 |
|
nfmpo1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) |
| 12 |
8 11
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐹 |
| 13 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
| 14 |
1 12 13
|
nfov |
⊢ Ⅎ 𝑥 ( 𝐴 𝐹 𝑦 ) |
| 15 |
14 4
|
nfeq |
⊢ Ⅎ 𝑥 ( 𝐴 𝐹 𝑦 ) = 𝐺 |
| 16 |
10 15
|
nfim |
⊢ Ⅎ 𝑥 ( 𝐺 ∈ V → ( 𝐴 𝐹 𝑦 ) = 𝐺 ) |
| 17 |
5
|
nfel1 |
⊢ Ⅎ 𝑦 𝑆 ∈ V |
| 18 |
|
nfmpo2 |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) |
| 19 |
8 18
|
nfcxfr |
⊢ Ⅎ 𝑦 𝐹 |
| 20 |
2 19 3
|
nfov |
⊢ Ⅎ 𝑦 ( 𝐴 𝐹 𝐵 ) |
| 21 |
20 5
|
nfeq |
⊢ Ⅎ 𝑦 ( 𝐴 𝐹 𝐵 ) = 𝑆 |
| 22 |
17 21
|
nfim |
⊢ Ⅎ 𝑦 ( 𝑆 ∈ V → ( 𝐴 𝐹 𝐵 ) = 𝑆 ) |
| 23 |
6
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( 𝑅 ∈ V ↔ 𝐺 ∈ V ) ) |
| 24 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐹 𝑦 ) = ( 𝐴 𝐹 𝑦 ) ) |
| 25 |
24 6
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐹 𝑦 ) = 𝑅 ↔ ( 𝐴 𝐹 𝑦 ) = 𝐺 ) ) |
| 26 |
23 25
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑅 ∈ V → ( 𝑥 𝐹 𝑦 ) = 𝑅 ) ↔ ( 𝐺 ∈ V → ( 𝐴 𝐹 𝑦 ) = 𝐺 ) ) ) |
| 27 |
7
|
eleq1d |
⊢ ( 𝑦 = 𝐵 → ( 𝐺 ∈ V ↔ 𝑆 ∈ V ) ) |
| 28 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐹 𝑦 ) = ( 𝐴 𝐹 𝐵 ) ) |
| 29 |
28 7
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝐹 𝑦 ) = 𝐺 ↔ ( 𝐴 𝐹 𝐵 ) = 𝑆 ) ) |
| 30 |
27 29
|
imbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐺 ∈ V → ( 𝐴 𝐹 𝑦 ) = 𝐺 ) ↔ ( 𝑆 ∈ V → ( 𝐴 𝐹 𝐵 ) = 𝑆 ) ) ) |
| 31 |
8
|
ovmpt4g |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 𝐹 𝑦 ) = 𝑅 ) |
| 32 |
31
|
3expia |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) → ( 𝑅 ∈ V → ( 𝑥 𝐹 𝑦 ) = 𝑅 ) ) |
| 33 |
1 2 3 16 22 26 30 32
|
vtocl2gaf |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝑆 ∈ V → ( 𝐴 𝐹 𝐵 ) = 𝑆 ) ) |
| 34 |
9 33
|
syl5 |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝑆 ∈ 𝐻 → ( 𝐴 𝐹 𝐵 ) = 𝑆 ) ) |
| 35 |
34
|
3impia |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻 ) → ( 𝐴 𝐹 𝐵 ) = 𝑆 ) |