Metamath Proof Explorer


Theorem ovanraleqv

Description: Equality theorem for a conjunction with an operation values within a restricted universal quantification. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022)

Ref Expression
Hypothesis ovanraleqv.1 ( 𝐵 = 𝑋 → ( 𝜑𝜓 ) )
Assertion ovanraleqv ( 𝐵 = 𝑋 → ( ∀ 𝑥𝑉 ( 𝜑 ∧ ( 𝐴 · 𝐵 ) = 𝐶 ) ↔ ∀ 𝑥𝑉 ( 𝜓 ∧ ( 𝐴 · 𝑋 ) = 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 ovanraleqv.1 ( 𝐵 = 𝑋 → ( 𝜑𝜓 ) )
2 oveq2 ( 𝐵 = 𝑋 → ( 𝐴 · 𝐵 ) = ( 𝐴 · 𝑋 ) )
3 2 eqeq1d ( 𝐵 = 𝑋 → ( ( 𝐴 · 𝐵 ) = 𝐶 ↔ ( 𝐴 · 𝑋 ) = 𝐶 ) )
4 1 3 anbi12d ( 𝐵 = 𝑋 → ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) = 𝐶 ) ↔ ( 𝜓 ∧ ( 𝐴 · 𝑋 ) = 𝐶 ) ) )
5 4 ralbidv ( 𝐵 = 𝑋 → ( ∀ 𝑥𝑉 ( 𝜑 ∧ ( 𝐴 · 𝐵 ) = 𝐶 ) ↔ ∀ 𝑥𝑉 ( 𝜓 ∧ ( 𝐴 · 𝑋 ) = 𝐶 ) ) )