Metamath Proof Explorer


Theorem ovconst2

Description: The value of a constant operation. (Contributed by NM, 5-Nov-2006)

Ref Expression
Hypothesis oprvalconst2.1 𝐶 ∈ V
Assertion ovconst2 ( ( 𝑅𝐴𝑆𝐵 ) → ( 𝑅 ( ( 𝐴 × 𝐵 ) × { 𝐶 } ) 𝑆 ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 oprvalconst2.1 𝐶 ∈ V
2 df-ov ( 𝑅 ( ( 𝐴 × 𝐵 ) × { 𝐶 } ) 𝑆 ) = ( ( ( 𝐴 × 𝐵 ) × { 𝐶 } ) ‘ ⟨ 𝑅 , 𝑆 ⟩ )
3 opelxpi ( ( 𝑅𝐴𝑆𝐵 ) → ⟨ 𝑅 , 𝑆 ⟩ ∈ ( 𝐴 × 𝐵 ) )
4 1 fvconst2 ( ⟨ 𝑅 , 𝑆 ⟩ ∈ ( 𝐴 × 𝐵 ) → ( ( ( 𝐴 × 𝐵 ) × { 𝐶 } ) ‘ ⟨ 𝑅 , 𝑆 ⟩ ) = 𝐶 )
5 3 4 syl ( ( 𝑅𝐴𝑆𝐵 ) → ( ( ( 𝐴 × 𝐵 ) × { 𝐶 } ) ‘ ⟨ 𝑅 , 𝑆 ⟩ ) = 𝐶 )
6 2 5 eqtrid ( ( 𝑅𝐴𝑆𝐵 ) → ( 𝑅 ( ( 𝐴 × 𝐵 ) × { 𝐶 } ) 𝑆 ) = 𝐶 )