Step |
Hyp |
Ref |
Expression |
1 |
|
fvelimab |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( 𝐷 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) ↔ ∃ 𝑧 ∈ ( 𝐵 × 𝐶 ) ( 𝐹 ‘ 𝑧 ) = 𝐷 ) ) |
2 |
|
fveq2 |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ) |
3 |
|
df-ov |
⊢ ( 𝑥 𝐹 𝑦 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) |
4 |
2 3
|
eqtr4di |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ‘ 𝑧 ) = ( 𝑥 𝐹 𝑦 ) ) |
5 |
4
|
eqeq1d |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 𝐹 ‘ 𝑧 ) = 𝐷 ↔ ( 𝑥 𝐹 𝑦 ) = 𝐷 ) ) |
6 |
|
eqcom |
⊢ ( ( 𝑥 𝐹 𝑦 ) = 𝐷 ↔ 𝐷 = ( 𝑥 𝐹 𝑦 ) ) |
7 |
5 6
|
bitrdi |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 𝐹 ‘ 𝑧 ) = 𝐷 ↔ 𝐷 = ( 𝑥 𝐹 𝑦 ) ) ) |
8 |
7
|
rexxp |
⊢ ( ∃ 𝑧 ∈ ( 𝐵 × 𝐶 ) ( 𝐹 ‘ 𝑧 ) = 𝐷 ↔ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 𝐷 = ( 𝑥 𝐹 𝑦 ) ) |
9 |
1 8
|
bitrdi |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( 𝐷 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 𝐷 = ( 𝑥 𝐹 𝑦 ) ) ) |