Step |
Hyp |
Ref |
Expression |
1 |
|
fnrnov |
⊢ ( 𝐹 Fn ( 𝐴 × 𝐵 ) → ran 𝐹 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 𝐹 𝑦 ) } ) |
2 |
1
|
eleq2d |
⊢ ( 𝐹 Fn ( 𝐴 × 𝐵 ) → ( 𝐶 ∈ ran 𝐹 ↔ 𝐶 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 𝐹 𝑦 ) } ) ) |
3 |
|
ovex |
⊢ ( 𝑥 𝐹 𝑦 ) ∈ V |
4 |
|
eleq1 |
⊢ ( 𝐶 = ( 𝑥 𝐹 𝑦 ) → ( 𝐶 ∈ V ↔ ( 𝑥 𝐹 𝑦 ) ∈ V ) ) |
5 |
3 4
|
mpbiri |
⊢ ( 𝐶 = ( 𝑥 𝐹 𝑦 ) → 𝐶 ∈ V ) |
6 |
5
|
rexlimivw |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 𝐹 𝑦 ) → 𝐶 ∈ V ) |
7 |
6
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 𝐹 𝑦 ) → 𝐶 ∈ V ) |
8 |
|
eqeq1 |
⊢ ( 𝑧 = 𝐶 → ( 𝑧 = ( 𝑥 𝐹 𝑦 ) ↔ 𝐶 = ( 𝑥 𝐹 𝑦 ) ) ) |
9 |
8
|
2rexbidv |
⊢ ( 𝑧 = 𝐶 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 𝐹 𝑦 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 𝐹 𝑦 ) ) ) |
10 |
7 9
|
elab3 |
⊢ ( 𝐶 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 𝐹 𝑦 ) } ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 𝐹 𝑦 ) ) |
11 |
2 10
|
bitrdi |
⊢ ( 𝐹 Fn ( 𝐴 × 𝐵 ) → ( 𝐶 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐶 = ( 𝑥 𝐹 𝑦 ) ) ) |