Description: Equality theorem for operation value. (Contributed by NM, 28-Feb-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oveq | ⊢ ( 𝐹 = 𝐺 → ( 𝐴 𝐹 𝐵 ) = ( 𝐴 𝐺 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 | ⊢ ( 𝐹 = 𝐺 → ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) = ( 𝐺 ‘ 〈 𝐴 , 𝐵 〉 ) ) | |
| 2 | df-ov | ⊢ ( 𝐴 𝐹 𝐵 ) = ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 3 | df-ov | ⊢ ( 𝐴 𝐺 𝐵 ) = ( 𝐺 ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 4 | 1 2 3 | 3eqtr4g | ⊢ ( 𝐹 = 𝐺 → ( 𝐴 𝐹 𝐵 ) = ( 𝐴 𝐺 𝐵 ) ) |