Step |
Hyp |
Ref |
Expression |
1 |
|
ovid.1 |
⊢ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) → ∃! 𝑧 𝜑 ) |
2 |
|
ovid.2 |
⊢ 𝐹 = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝜑 ) } |
3 |
|
df-ov |
⊢ ( 𝑥 𝐹 𝑦 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) |
4 |
3
|
eqeq1i |
⊢ ( ( 𝑥 𝐹 𝑦 ) = 𝑧 ↔ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑧 ) |
5 |
1
|
fnoprab |
⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝜑 ) } Fn { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) } |
6 |
2
|
fneq1i |
⊢ ( 𝐹 Fn { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) } ↔ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝜑 ) } Fn { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) } ) |
7 |
5 6
|
mpbir |
⊢ 𝐹 Fn { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) } |
8 |
|
opabidw |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) } ↔ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) ) |
9 |
8
|
biimpri |
⊢ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) → 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) } ) |
10 |
|
fnopfvb |
⊢ ( ( 𝐹 Fn { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) } ∧ 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) } ) → ( ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑧 ↔ 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∈ 𝐹 ) ) |
11 |
7 9 10
|
sylancr |
⊢ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑧 ↔ 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∈ 𝐹 ) ) |
12 |
2
|
eleq2i |
⊢ ( 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∈ 𝐹 ↔ 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∈ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝜑 ) } ) |
13 |
|
oprabidw |
⊢ ( 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∈ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝜑 ) } ↔ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝜑 ) ) |
14 |
12 13
|
bitri |
⊢ ( 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∈ 𝐹 ↔ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝜑 ) ) |
15 |
14
|
baib |
⊢ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) → ( 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∈ 𝐹 ↔ 𝜑 ) ) |
16 |
11 15
|
bitrd |
⊢ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑧 ↔ 𝜑 ) ) |
17 |
4 16
|
bitrid |
⊢ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 𝐹 𝑦 ) = 𝑧 ↔ 𝜑 ) ) |