Metamath Proof Explorer


Theorem ovif

Description: Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 25-Jan-2017)

Ref Expression
Assertion ovif ( if ( 𝜑 , 𝐴 , 𝐵 ) 𝐹 𝐶 ) = if ( 𝜑 , ( 𝐴 𝐹 𝐶 ) , ( 𝐵 𝐹 𝐶 ) )

Proof

Step Hyp Ref Expression
1 oveq1 ( if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 → ( if ( 𝜑 , 𝐴 , 𝐵 ) 𝐹 𝐶 ) = ( 𝐴 𝐹 𝐶 ) )
2 oveq1 ( if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 → ( if ( 𝜑 , 𝐴 , 𝐵 ) 𝐹 𝐶 ) = ( 𝐵 𝐹 𝐶 ) )
3 1 2 ifsb ( if ( 𝜑 , 𝐴 , 𝐵 ) 𝐹 𝐶 ) = if ( 𝜑 , ( 𝐴 𝐹 𝐶 ) , ( 𝐵 𝐹 𝐶 ) )