Step |
Hyp |
Ref |
Expression |
1 |
|
iftrue |
⊢ ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ) |
2 |
|
iftrue |
⊢ ( 𝜑 → if ( 𝜑 , 𝐶 , 𝐷 ) = 𝐶 ) |
3 |
1 2
|
oveq12d |
⊢ ( 𝜑 → ( if ( 𝜑 , 𝐴 , 𝐵 ) 𝐹 if ( 𝜑 , 𝐶 , 𝐷 ) ) = ( 𝐴 𝐹 𝐶 ) ) |
4 |
|
iftrue |
⊢ ( 𝜑 → if ( 𝜑 , ( 𝐴 𝐹 𝐶 ) , ( 𝐵 𝐹 𝐷 ) ) = ( 𝐴 𝐹 𝐶 ) ) |
5 |
3 4
|
eqtr4d |
⊢ ( 𝜑 → ( if ( 𝜑 , 𝐴 , 𝐵 ) 𝐹 if ( 𝜑 , 𝐶 , 𝐷 ) ) = if ( 𝜑 , ( 𝐴 𝐹 𝐶 ) , ( 𝐵 𝐹 𝐷 ) ) ) |
6 |
|
iffalse |
⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) |
7 |
|
iffalse |
⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐶 , 𝐷 ) = 𝐷 ) |
8 |
6 7
|
oveq12d |
⊢ ( ¬ 𝜑 → ( if ( 𝜑 , 𝐴 , 𝐵 ) 𝐹 if ( 𝜑 , 𝐶 , 𝐷 ) ) = ( 𝐵 𝐹 𝐷 ) ) |
9 |
|
iffalse |
⊢ ( ¬ 𝜑 → if ( 𝜑 , ( 𝐴 𝐹 𝐶 ) , ( 𝐵 𝐹 𝐷 ) ) = ( 𝐵 𝐹 𝐷 ) ) |
10 |
8 9
|
eqtr4d |
⊢ ( ¬ 𝜑 → ( if ( 𝜑 , 𝐴 , 𝐵 ) 𝐹 if ( 𝜑 , 𝐶 , 𝐷 ) ) = if ( 𝜑 , ( 𝐴 𝐹 𝐶 ) , ( 𝐵 𝐹 𝐷 ) ) ) |
11 |
5 10
|
pm2.61i |
⊢ ( if ( 𝜑 , 𝐴 , 𝐵 ) 𝐹 if ( 𝜑 , 𝐶 , 𝐷 ) ) = if ( 𝜑 , ( 𝐴 𝐹 𝐶 ) , ( 𝐵 𝐹 𝐷 ) ) |