| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iftrue | ⊢ ( 𝜑  →  if ( 𝜑 ,  𝐴 ,  𝐵 )  =  𝐴 ) | 
						
							| 2 |  | iftrue | ⊢ ( 𝜑  →  if ( 𝜑 ,  𝐶 ,  𝐷 )  =  𝐶 ) | 
						
							| 3 | 1 2 | oveq12d | ⊢ ( 𝜑  →  ( if ( 𝜑 ,  𝐴 ,  𝐵 ) 𝐹 if ( 𝜑 ,  𝐶 ,  𝐷 ) )  =  ( 𝐴 𝐹 𝐶 ) ) | 
						
							| 4 |  | iftrue | ⊢ ( 𝜑  →  if ( 𝜑 ,  ( 𝐴 𝐹 𝐶 ) ,  ( 𝐵 𝐹 𝐷 ) )  =  ( 𝐴 𝐹 𝐶 ) ) | 
						
							| 5 | 3 4 | eqtr4d | ⊢ ( 𝜑  →  ( if ( 𝜑 ,  𝐴 ,  𝐵 ) 𝐹 if ( 𝜑 ,  𝐶 ,  𝐷 ) )  =  if ( 𝜑 ,  ( 𝐴 𝐹 𝐶 ) ,  ( 𝐵 𝐹 𝐷 ) ) ) | 
						
							| 6 |  | iffalse | ⊢ ( ¬  𝜑  →  if ( 𝜑 ,  𝐴 ,  𝐵 )  =  𝐵 ) | 
						
							| 7 |  | iffalse | ⊢ ( ¬  𝜑  →  if ( 𝜑 ,  𝐶 ,  𝐷 )  =  𝐷 ) | 
						
							| 8 | 6 7 | oveq12d | ⊢ ( ¬  𝜑  →  ( if ( 𝜑 ,  𝐴 ,  𝐵 ) 𝐹 if ( 𝜑 ,  𝐶 ,  𝐷 ) )  =  ( 𝐵 𝐹 𝐷 ) ) | 
						
							| 9 |  | iffalse | ⊢ ( ¬  𝜑  →  if ( 𝜑 ,  ( 𝐴 𝐹 𝐶 ) ,  ( 𝐵 𝐹 𝐷 ) )  =  ( 𝐵 𝐹 𝐷 ) ) | 
						
							| 10 | 8 9 | eqtr4d | ⊢ ( ¬  𝜑  →  ( if ( 𝜑 ,  𝐴 ,  𝐵 ) 𝐹 if ( 𝜑 ,  𝐶 ,  𝐷 ) )  =  if ( 𝜑 ,  ( 𝐴 𝐹 𝐶 ) ,  ( 𝐵 𝐹 𝐷 ) ) ) | 
						
							| 11 | 5 10 | pm2.61i | ⊢ ( if ( 𝜑 ,  𝐴 ,  𝐵 ) 𝐹 if ( 𝜑 ,  𝐶 ,  𝐷 ) )  =  if ( 𝜑 ,  ( 𝐴 𝐹 𝐶 ) ,  ( 𝐵 𝐹 𝐷 ) ) |