Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 𝑅 𝑌 ) = ∅ ) → ( 𝑋 𝑅 𝑌 ) = ∅ ) |
2 |
|
ssun2 |
⊢ { ∅ } ⊆ ( ( 𝑅 “ ( 𝐴 × 𝐵 ) ) ∪ { ∅ } ) |
3 |
|
0ex |
⊢ ∅ ∈ V |
4 |
3
|
snid |
⊢ ∅ ∈ { ∅ } |
5 |
2 4
|
sselii |
⊢ ∅ ∈ ( ( 𝑅 “ ( 𝐴 × 𝐵 ) ) ∪ { ∅ } ) |
6 |
1 5
|
eqeltrdi |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 𝑅 𝑌 ) = ∅ ) → ( 𝑋 𝑅 𝑌 ) ∈ ( ( 𝑅 “ ( 𝐴 × 𝐵 ) ) ∪ { ∅ } ) ) |
7 |
|
ssun1 |
⊢ ( 𝑅 “ ( 𝐴 × 𝐵 ) ) ⊆ ( ( 𝑅 “ ( 𝐴 × 𝐵 ) ) ∪ { ∅ } ) |
8 |
|
df-ov |
⊢ ( 𝑋 𝑅 𝑌 ) = ( 𝑅 ‘ 〈 𝑋 , 𝑌 〉 ) |
9 |
|
opelxpi |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐴 × 𝐵 ) ) |
10 |
8
|
eqeq1i |
⊢ ( ( 𝑋 𝑅 𝑌 ) = ∅ ↔ ( 𝑅 ‘ 〈 𝑋 , 𝑌 〉 ) = ∅ ) |
11 |
10
|
notbii |
⊢ ( ¬ ( 𝑋 𝑅 𝑌 ) = ∅ ↔ ¬ ( 𝑅 ‘ 〈 𝑋 , 𝑌 〉 ) = ∅ ) |
12 |
11
|
biimpi |
⊢ ( ¬ ( 𝑋 𝑅 𝑌 ) = ∅ → ¬ ( 𝑅 ‘ 〈 𝑋 , 𝑌 〉 ) = ∅ ) |
13 |
|
eliman0 |
⊢ ( ( 〈 𝑋 , 𝑌 〉 ∈ ( 𝐴 × 𝐵 ) ∧ ¬ ( 𝑅 ‘ 〈 𝑋 , 𝑌 〉 ) = ∅ ) → ( 𝑅 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ ( 𝑅 “ ( 𝐴 × 𝐵 ) ) ) |
14 |
9 12 13
|
syl2an |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑋 𝑅 𝑌 ) = ∅ ) → ( 𝑅 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ ( 𝑅 “ ( 𝐴 × 𝐵 ) ) ) |
15 |
8 14
|
eqeltrid |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑋 𝑅 𝑌 ) = ∅ ) → ( 𝑋 𝑅 𝑌 ) ∈ ( 𝑅 “ ( 𝐴 × 𝐵 ) ) ) |
16 |
7 15
|
sselid |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑋 𝑅 𝑌 ) = ∅ ) → ( 𝑋 𝑅 𝑌 ) ∈ ( ( 𝑅 “ ( 𝐴 × 𝐵 ) ) ∪ { ∅ } ) ) |
17 |
6 16
|
pm2.61dan |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝑅 𝑌 ) ∈ ( ( 𝑅 “ ( 𝐴 × 𝐵 ) ) ∪ { ∅ } ) ) |