Metamath Proof Explorer


Theorem ovima0

Description: An operation value is a member of the image plus null. (Contributed by Thierry Arnoux, 25-Jun-2019)

Ref Expression
Assertion ovima0 ( ( 𝑋𝐴𝑌𝐵 ) → ( 𝑋 𝑅 𝑌 ) ∈ ( ( 𝑅 “ ( 𝐴 × 𝐵 ) ) ∪ { ∅ } ) )

Proof

Step Hyp Ref Expression
1 simpr ( ( ( 𝑋𝐴𝑌𝐵 ) ∧ ( 𝑋 𝑅 𝑌 ) = ∅ ) → ( 𝑋 𝑅 𝑌 ) = ∅ )
2 ssun2 { ∅ } ⊆ ( ( 𝑅 “ ( 𝐴 × 𝐵 ) ) ∪ { ∅ } )
3 0ex ∅ ∈ V
4 3 snid ∅ ∈ { ∅ }
5 2 4 sselii ∅ ∈ ( ( 𝑅 “ ( 𝐴 × 𝐵 ) ) ∪ { ∅ } )
6 1 5 eqeltrdi ( ( ( 𝑋𝐴𝑌𝐵 ) ∧ ( 𝑋 𝑅 𝑌 ) = ∅ ) → ( 𝑋 𝑅 𝑌 ) ∈ ( ( 𝑅 “ ( 𝐴 × 𝐵 ) ) ∪ { ∅ } ) )
7 ssun1 ( 𝑅 “ ( 𝐴 × 𝐵 ) ) ⊆ ( ( 𝑅 “ ( 𝐴 × 𝐵 ) ) ∪ { ∅ } )
8 df-ov ( 𝑋 𝑅 𝑌 ) = ( 𝑅 ‘ ⟨ 𝑋 , 𝑌 ⟩ )
9 opelxpi ( ( 𝑋𝐴𝑌𝐵 ) → ⟨ 𝑋 , 𝑌 ⟩ ∈ ( 𝐴 × 𝐵 ) )
10 8 eqeq1i ( ( 𝑋 𝑅 𝑌 ) = ∅ ↔ ( 𝑅 ‘ ⟨ 𝑋 , 𝑌 ⟩ ) = ∅ )
11 10 notbii ( ¬ ( 𝑋 𝑅 𝑌 ) = ∅ ↔ ¬ ( 𝑅 ‘ ⟨ 𝑋 , 𝑌 ⟩ ) = ∅ )
12 11 biimpi ( ¬ ( 𝑋 𝑅 𝑌 ) = ∅ → ¬ ( 𝑅 ‘ ⟨ 𝑋 , 𝑌 ⟩ ) = ∅ )
13 eliman0 ( ( ⟨ 𝑋 , 𝑌 ⟩ ∈ ( 𝐴 × 𝐵 ) ∧ ¬ ( 𝑅 ‘ ⟨ 𝑋 , 𝑌 ⟩ ) = ∅ ) → ( 𝑅 ‘ ⟨ 𝑋 , 𝑌 ⟩ ) ∈ ( 𝑅 “ ( 𝐴 × 𝐵 ) ) )
14 9 12 13 syl2an ( ( ( 𝑋𝐴𝑌𝐵 ) ∧ ¬ ( 𝑋 𝑅 𝑌 ) = ∅ ) → ( 𝑅 ‘ ⟨ 𝑋 , 𝑌 ⟩ ) ∈ ( 𝑅 “ ( 𝐴 × 𝐵 ) ) )
15 8 14 eqeltrid ( ( ( 𝑋𝐴𝑌𝐵 ) ∧ ¬ ( 𝑋 𝑅 𝑌 ) = ∅ ) → ( 𝑋 𝑅 𝑌 ) ∈ ( 𝑅 “ ( 𝐴 × 𝐵 ) ) )
16 7 15 sselid ( ( ( 𝑋𝐴𝑌𝐵 ) ∧ ¬ ( 𝑋 𝑅 𝑌 ) = ∅ ) → ( 𝑋 𝑅 𝑌 ) ∈ ( ( 𝑅 “ ( 𝐴 × 𝐵 ) ) ∪ { ∅ } ) )
17 6 16 pm2.61dan ( ( 𝑋𝐴𝑌𝐵 ) → ( 𝑋 𝑅 𝑌 ) ∈ ( ( 𝑅 “ ( 𝐴 × 𝐵 ) ) ∪ { ∅ } ) )