Metamath Proof Explorer


Theorem ovmpoa

Description: Value of an operation given by a maps-to rule. (Contributed by NM, 19-Dec-2013)

Ref Expression
Hypotheses ovmpoga.1 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → 𝑅 = 𝑆 )
ovmpoga.2 𝐹 = ( 𝑥𝐶 , 𝑦𝐷𝑅 )
ovmpoa.4 𝑆 ∈ V
Assertion ovmpoa ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴 𝐹 𝐵 ) = 𝑆 )

Proof

Step Hyp Ref Expression
1 ovmpoga.1 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → 𝑅 = 𝑆 )
2 ovmpoga.2 𝐹 = ( 𝑥𝐶 , 𝑦𝐷𝑅 )
3 ovmpoa.4 𝑆 ∈ V
4 1 2 ovmpoga ( ( 𝐴𝐶𝐵𝐷𝑆 ∈ V ) → ( 𝐴 𝐹 𝐵 ) = 𝑆 )
5 3 4 mp3an3 ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴 𝐹 𝐵 ) = 𝑆 )