Metamath Proof Explorer


Theorem ovmpodv

Description: Alternate deduction version of ovmpo , suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017)

Ref Expression
Hypotheses ovmpodf.1 ( 𝜑𝐴𝐶 )
ovmpodf.2 ( ( 𝜑𝑥 = 𝐴 ) → 𝐵𝐷 )
ovmpodf.3 ( ( 𝜑 ∧ ( 𝑥 = 𝐴𝑦 = 𝐵 ) ) → 𝑅𝑉 )
ovmpodf.4 ( ( 𝜑 ∧ ( 𝑥 = 𝐴𝑦 = 𝐵 ) ) → ( ( 𝐴 𝐹 𝐵 ) = 𝑅𝜓 ) )
Assertion ovmpodv ( 𝜑 → ( 𝐹 = ( 𝑥𝐶 , 𝑦𝐷𝑅 ) → 𝜓 ) )

Proof

Step Hyp Ref Expression
1 ovmpodf.1 ( 𝜑𝐴𝐶 )
2 ovmpodf.2 ( ( 𝜑𝑥 = 𝐴 ) → 𝐵𝐷 )
3 ovmpodf.3 ( ( 𝜑 ∧ ( 𝑥 = 𝐴𝑦 = 𝐵 ) ) → 𝑅𝑉 )
4 ovmpodf.4 ( ( 𝜑 ∧ ( 𝑥 = 𝐴𝑦 = 𝐵 ) ) → ( ( 𝐴 𝐹 𝐵 ) = 𝑅𝜓 ) )
5 nfcv 𝑥 𝐹
6 nfv 𝑥 𝜓
7 nfcv 𝑦 𝐹
8 nfv 𝑦 𝜓
9 1 2 3 4 5 6 7 8 ovmpodf ( 𝜑 → ( 𝐹 = ( 𝑥𝐶 , 𝑦𝐷𝑅 ) → 𝜓 ) )