Step |
Hyp |
Ref |
Expression |
1 |
|
ovmpodv2.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |
2 |
|
ovmpodv2.2 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ 𝐷 ) |
3 |
|
ovmpodv2.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝑅 ∈ 𝑉 ) |
4 |
|
ovmpodv2.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝑅 = 𝑆 ) |
5 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) ) |
6 |
4
|
eqeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑅 ↔ ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) ) |
7 |
6
|
biimpd |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → ( ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑅 → ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) ) |
8 |
|
nfmpo1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) |
9 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
10 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐵 |
11 |
9 8 10
|
nfov |
⊢ Ⅎ 𝑥 ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) |
12 |
11
|
nfeq1 |
⊢ Ⅎ 𝑥 ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 |
13 |
|
nfmpo2 |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) |
14 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
15 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
16 |
14 13 15
|
nfov |
⊢ Ⅎ 𝑦 ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) |
17 |
16
|
nfeq1 |
⊢ Ⅎ 𝑦 ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 |
18 |
1 2 3 7 8 12 13 17
|
ovmpodf |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) → ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) ) |
19 |
5 18
|
mpd |
⊢ ( 𝜑 → ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) |
20 |
|
oveq |
⊢ ( 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) → ( 𝐴 𝐹 𝐵 ) = ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) ) |
21 |
20
|
eqeq1d |
⊢ ( 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) → ( ( 𝐴 𝐹 𝐵 ) = 𝑆 ↔ ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) ) |
22 |
19 21
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) → ( 𝐴 𝐹 𝐵 ) = 𝑆 ) ) |