Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovmpodx.1 | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) ) | |
| ovmpodx.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝑅 = 𝑆 ) | ||
| ovmpodx.3 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐷 = 𝐿 ) | ||
| ovmpodx.4 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) | ||
| ovmpodx.5 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐿 ) | ||
| ovmpodx.6 | ⊢ ( 𝜑 → 𝑆 ∈ 𝑋 ) | ||
| Assertion | ovmpodx | ⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) = 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpodx.1 | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) ) | |
| 2 | ovmpodx.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝑅 = 𝑆 ) | |
| 3 | ovmpodx.3 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐷 = 𝐿 ) | |
| 4 | ovmpodx.4 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) | |
| 5 | ovmpodx.5 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐿 ) | |
| 6 | ovmpodx.6 | ⊢ ( 𝜑 → 𝑆 ∈ 𝑋 ) | |
| 7 | nfv | ⊢ Ⅎ 𝑥 𝜑 | |
| 8 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
| 9 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 10 | nfcv | ⊢ Ⅎ 𝑥 𝐵 | |
| 11 | nfcv | ⊢ Ⅎ 𝑥 𝑆 | |
| 12 | nfcv | ⊢ Ⅎ 𝑦 𝑆 | |
| 13 | 1 2 3 4 5 6 7 8 9 10 11 12 | ovmpodxf | ⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) = 𝑆 ) |