Metamath Proof Explorer


Theorem ovmpodx

Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses ovmpodx.1 ( 𝜑𝐹 = ( 𝑥𝐶 , 𝑦𝐷𝑅 ) )
ovmpodx.2 ( ( 𝜑 ∧ ( 𝑥 = 𝐴𝑦 = 𝐵 ) ) → 𝑅 = 𝑆 )
ovmpodx.3 ( ( 𝜑𝑥 = 𝐴 ) → 𝐷 = 𝐿 )
ovmpodx.4 ( 𝜑𝐴𝐶 )
ovmpodx.5 ( 𝜑𝐵𝐿 )
ovmpodx.6 ( 𝜑𝑆𝑋 )
Assertion ovmpodx ( 𝜑 → ( 𝐴 𝐹 𝐵 ) = 𝑆 )

Proof

Step Hyp Ref Expression
1 ovmpodx.1 ( 𝜑𝐹 = ( 𝑥𝐶 , 𝑦𝐷𝑅 ) )
2 ovmpodx.2 ( ( 𝜑 ∧ ( 𝑥 = 𝐴𝑦 = 𝐵 ) ) → 𝑅 = 𝑆 )
3 ovmpodx.3 ( ( 𝜑𝑥 = 𝐴 ) → 𝐷 = 𝐿 )
4 ovmpodx.4 ( 𝜑𝐴𝐶 )
5 ovmpodx.5 ( 𝜑𝐵𝐿 )
6 ovmpodx.6 ( 𝜑𝑆𝑋 )
7 nfv 𝑥 𝜑
8 nfv 𝑦 𝜑
9 nfcv 𝑦 𝐴
10 nfcv 𝑥 𝐵
11 nfcv 𝑥 𝑆
12 nfcv 𝑦 𝑆
13 1 2 3 4 5 6 7 8 9 10 11 12 ovmpodxf ( 𝜑 → ( 𝐴 𝐹 𝐵 ) = 𝑆 )