Step |
Hyp |
Ref |
Expression |
1 |
|
ovmpodx.1 |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) ) |
2 |
|
ovmpodx.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝑅 = 𝑆 ) |
3 |
|
ovmpodx.3 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐷 = 𝐿 ) |
4 |
|
ovmpodx.4 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |
5 |
|
ovmpodx.5 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐿 ) |
6 |
|
ovmpodx.6 |
⊢ ( 𝜑 → 𝑆 ∈ 𝑋 ) |
7 |
|
ovmpodxf.px |
⊢ Ⅎ 𝑥 𝜑 |
8 |
|
ovmpodxf.py |
⊢ Ⅎ 𝑦 𝜑 |
9 |
|
ovmpodxf.ay |
⊢ Ⅎ 𝑦 𝐴 |
10 |
|
ovmpodxf.bx |
⊢ Ⅎ 𝑥 𝐵 |
11 |
|
ovmpodxf.sx |
⊢ Ⅎ 𝑥 𝑆 |
12 |
|
ovmpodxf.sy |
⊢ Ⅎ 𝑦 𝑆 |
13 |
1
|
oveqd |
⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) = ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) ) |
14 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) |
15 |
14
|
ovmpt4g |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) |
16 |
15
|
a1i |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ) |
17 |
8 16
|
alrimi |
⊢ ( 𝜑 → ∀ 𝑦 ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ) |
18 |
5 17
|
spsbcd |
⊢ ( 𝜑 → [ 𝐵 / 𝑦 ] ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ) |
19 |
7 18
|
alrimi |
⊢ ( 𝜑 → ∀ 𝑥 [ 𝐵 / 𝑦 ] ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ) |
20 |
4 19
|
spsbcd |
⊢ ( 𝜑 → [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ) |
21 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ 𝐿 ) |
22 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝑥 = 𝐴 ) |
23 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝐴 ∈ 𝐶 ) |
24 |
22 23
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝑥 ∈ 𝐶 ) |
25 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝐵 ∈ 𝐿 ) |
26 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝑦 = 𝐵 ) |
27 |
3
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝐷 = 𝐿 ) |
28 |
25 26 27
|
3eltr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝑦 ∈ 𝐷 ) |
29 |
2
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝑅 = 𝑆 ) |
30 |
6
|
elexd |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
31 |
30
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝑆 ∈ V ) |
32 |
29 31
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝑅 ∈ V ) |
33 |
|
biimt |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ↔ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ) ) |
34 |
24 28 32 33
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → ( ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ↔ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ) ) |
35 |
22 26
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) ) |
36 |
35 29
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → ( ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ↔ ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) ) |
37 |
34 36
|
bitr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → ( ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ↔ ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) ) |
38 |
9
|
nfeq2 |
⊢ Ⅎ 𝑦 𝑥 = 𝐴 |
39 |
8 38
|
nfan |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝑥 = 𝐴 ) |
40 |
|
nfmpo2 |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) |
41 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
42 |
9 40 41
|
nfov |
⊢ Ⅎ 𝑦 ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) |
43 |
42 12
|
nfeq |
⊢ Ⅎ 𝑦 ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 |
44 |
43
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → Ⅎ 𝑦 ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) |
45 |
21 37 39 44
|
sbciedf |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( [ 𝐵 / 𝑦 ] ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ↔ ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) ) |
46 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
47 |
|
nfmpo1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) |
48 |
46 47 10
|
nfov |
⊢ Ⅎ 𝑥 ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) |
49 |
48 11
|
nfeq |
⊢ Ⅎ 𝑥 ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 |
50 |
49
|
a1i |
⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) |
51 |
4 45 7 50
|
sbciedf |
⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ↔ ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) ) |
52 |
20 51
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) |
53 |
13 52
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) = 𝑆 ) |