| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovmpodx.1 |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) ) |
| 2 |
|
ovmpodx.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝑅 = 𝑆 ) |
| 3 |
|
ovmpodx.3 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐷 = 𝐿 ) |
| 4 |
|
ovmpodx.4 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |
| 5 |
|
ovmpodx.5 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐿 ) |
| 6 |
|
ovmpodx.6 |
⊢ ( 𝜑 → 𝑆 ∈ 𝑋 ) |
| 7 |
|
ovmpodxf.px |
⊢ Ⅎ 𝑥 𝜑 |
| 8 |
|
ovmpodxf.py |
⊢ Ⅎ 𝑦 𝜑 |
| 9 |
|
ovmpodxf.ay |
⊢ Ⅎ 𝑦 𝐴 |
| 10 |
|
ovmpodxf.bx |
⊢ Ⅎ 𝑥 𝐵 |
| 11 |
|
ovmpodxf.sx |
⊢ Ⅎ 𝑥 𝑆 |
| 12 |
|
ovmpodxf.sy |
⊢ Ⅎ 𝑦 𝑆 |
| 13 |
1
|
oveqd |
⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) = ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) ) |
| 14 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) |
| 15 |
14
|
ovmpt4g |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ) |
| 17 |
8 16
|
alrimi |
⊢ ( 𝜑 → ∀ 𝑦 ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ) |
| 18 |
5 17
|
spsbcd |
⊢ ( 𝜑 → [ 𝐵 / 𝑦 ] ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ) |
| 19 |
7 18
|
alrimi |
⊢ ( 𝜑 → ∀ 𝑥 [ 𝐵 / 𝑦 ] ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ) |
| 20 |
4 19
|
spsbcd |
⊢ ( 𝜑 → [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ) |
| 21 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ 𝐿 ) |
| 22 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝑥 = 𝐴 ) |
| 23 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝐴 ∈ 𝐶 ) |
| 24 |
22 23
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝑥 ∈ 𝐶 ) |
| 25 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝐵 ∈ 𝐿 ) |
| 26 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝑦 = 𝐵 ) |
| 27 |
3
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝐷 = 𝐿 ) |
| 28 |
25 26 27
|
3eltr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝑦 ∈ 𝐷 ) |
| 29 |
2
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝑅 = 𝑆 ) |
| 30 |
6
|
elexd |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 31 |
30
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝑆 ∈ V ) |
| 32 |
29 31
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝑅 ∈ V ) |
| 33 |
|
biimt |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ↔ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ) ) |
| 34 |
24 28 32 33
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → ( ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ↔ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ) ) |
| 35 |
22 26
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) ) |
| 36 |
35 29
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → ( ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ↔ ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) ) |
| 37 |
34 36
|
bitr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → ( ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ↔ ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) ) |
| 38 |
9
|
nfeq2 |
⊢ Ⅎ 𝑦 𝑥 = 𝐴 |
| 39 |
8 38
|
nfan |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝑥 = 𝐴 ) |
| 40 |
|
nfmpo2 |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) |
| 41 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
| 42 |
9 40 41
|
nfov |
⊢ Ⅎ 𝑦 ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) |
| 43 |
42 12
|
nfeq |
⊢ Ⅎ 𝑦 ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 |
| 44 |
43
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → Ⅎ 𝑦 ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) |
| 45 |
21 37 39 44
|
sbciedf |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( [ 𝐵 / 𝑦 ] ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ↔ ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) ) |
| 46 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
| 47 |
|
nfmpo1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) |
| 48 |
46 47 10
|
nfov |
⊢ Ⅎ 𝑥 ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) |
| 49 |
48 11
|
nfeq |
⊢ Ⅎ 𝑥 ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 |
| 50 |
49
|
a1i |
⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) |
| 51 |
4 45 7 50
|
sbciedf |
⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ V ) → ( 𝑥 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝑦 ) = 𝑅 ) ↔ ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) ) |
| 52 |
20 51
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) 𝐵 ) = 𝑆 ) |
| 53 |
13 52
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) = 𝑆 ) |