Metamath Proof Explorer


Theorem ovmpoga

Description: Value of an operation given by a maps-to rule. (Contributed by Mario Carneiro, 19-Dec-2013)

Ref Expression
Hypotheses ovmpoga.1 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → 𝑅 = 𝑆 )
ovmpoga.2 𝐹 = ( 𝑥𝐶 , 𝑦𝐷𝑅 )
Assertion ovmpoga ( ( 𝐴𝐶𝐵𝐷𝑆𝐻 ) → ( 𝐴 𝐹 𝐵 ) = 𝑆 )

Proof

Step Hyp Ref Expression
1 ovmpoga.1 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → 𝑅 = 𝑆 )
2 ovmpoga.2 𝐹 = ( 𝑥𝐶 , 𝑦𝐷𝑅 )
3 elex ( 𝑆𝐻𝑆 ∈ V )
4 2 a1i ( ( 𝐴𝐶𝐵𝐷𝑆 ∈ V ) → 𝐹 = ( 𝑥𝐶 , 𝑦𝐷𝑅 ) )
5 1 adantl ( ( ( 𝐴𝐶𝐵𝐷𝑆 ∈ V ) ∧ ( 𝑥 = 𝐴𝑦 = 𝐵 ) ) → 𝑅 = 𝑆 )
6 simp1 ( ( 𝐴𝐶𝐵𝐷𝑆 ∈ V ) → 𝐴𝐶 )
7 simp2 ( ( 𝐴𝐶𝐵𝐷𝑆 ∈ V ) → 𝐵𝐷 )
8 simp3 ( ( 𝐴𝐶𝐵𝐷𝑆 ∈ V ) → 𝑆 ∈ V )
9 4 5 6 7 8 ovmpod ( ( 𝐴𝐶𝐵𝐷𝑆 ∈ V ) → ( 𝐴 𝐹 𝐵 ) = 𝑆 )
10 3 9 syl3an3 ( ( 𝐴𝐶𝐵𝐷𝑆𝐻 ) → ( 𝐴 𝐹 𝐵 ) = 𝑆 )