Step |
Hyp |
Ref |
Expression |
1 |
|
ovmpox.1 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑅 = 𝑆 ) |
2 |
|
ovmpox.2 |
⊢ ( 𝑥 = 𝐴 → 𝐷 = 𝐿 ) |
3 |
|
ovmpox.3 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) |
4 |
|
elex |
⊢ ( 𝑆 ∈ 𝐻 → 𝑆 ∈ V ) |
5 |
3
|
a1i |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ V ) → 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) ) |
6 |
1
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ V ) ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) → 𝑅 = 𝑆 ) |
7 |
2
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ V ) ∧ 𝑥 = 𝐴 ) → 𝐷 = 𝐿 ) |
8 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ V ) → 𝐴 ∈ 𝐶 ) |
9 |
|
simp2 |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ V ) → 𝐵 ∈ 𝐿 ) |
10 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ V ) → 𝑆 ∈ V ) |
11 |
5 6 7 8 9 10
|
ovmpodx |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ V ) → ( 𝐴 𝐹 𝐵 ) = 𝑆 ) |
12 |
4 11
|
syl3an3 |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ 𝐻 ) → ( 𝐴 𝐹 𝐵 ) = 𝑆 ) |