Metamath Proof Explorer


Theorem ovmpox

Description: The value of an operation class abstraction. Variant of ovmpoga which does not require D and x to be distinct. (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 20-Dec-2013)

Ref Expression
Hypotheses ovmpox.1 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → 𝑅 = 𝑆 )
ovmpox.2 ( 𝑥 = 𝐴𝐷 = 𝐿 )
ovmpox.3 𝐹 = ( 𝑥𝐶 , 𝑦𝐷𝑅 )
Assertion ovmpox ( ( 𝐴𝐶𝐵𝐿𝑆𝐻 ) → ( 𝐴 𝐹 𝐵 ) = 𝑆 )

Proof

Step Hyp Ref Expression
1 ovmpox.1 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → 𝑅 = 𝑆 )
2 ovmpox.2 ( 𝑥 = 𝐴𝐷 = 𝐿 )
3 ovmpox.3 𝐹 = ( 𝑥𝐶 , 𝑦𝐷𝑅 )
4 elex ( 𝑆𝐻𝑆 ∈ V )
5 3 a1i ( ( 𝐴𝐶𝐵𝐿𝑆 ∈ V ) → 𝐹 = ( 𝑥𝐶 , 𝑦𝐷𝑅 ) )
6 1 adantl ( ( ( 𝐴𝐶𝐵𝐿𝑆 ∈ V ) ∧ ( 𝑥 = 𝐴𝑦 = 𝐵 ) ) → 𝑅 = 𝑆 )
7 2 adantl ( ( ( 𝐴𝐶𝐵𝐿𝑆 ∈ V ) ∧ 𝑥 = 𝐴 ) → 𝐷 = 𝐿 )
8 simp1 ( ( 𝐴𝐶𝐵𝐿𝑆 ∈ V ) → 𝐴𝐶 )
9 simp2 ( ( 𝐴𝐶𝐵𝐿𝑆 ∈ V ) → 𝐵𝐿 )
10 simp3 ( ( 𝐴𝐶𝐵𝐿𝑆 ∈ V ) → 𝑆 ∈ V )
11 5 6 7 8 9 10 ovmpodx ( ( 𝐴𝐶𝐵𝐿𝑆 ∈ V ) → ( 𝐴 𝐹 𝐵 ) = 𝑆 )
12 4 11 syl3an3 ( ( 𝐴𝐶𝐵𝐿𝑆𝐻 ) → ( 𝐴 𝐹 𝐵 ) = 𝑆 )