Metamath Proof Explorer


Theorem ovmpt3rab1

Description: The value of an operation defined by the maps-to notation with a function into a class abstraction as a result. The domain of the function and the base set of the class abstraction may depend on the operands, using implicit substitution. (Contributed by AV, 16-Jul-2018) (Revised by AV, 16-May-2019)

Ref Expression
Hypotheses ovmpt3rab1.o 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑧𝑀 ↦ { 𝑎𝑁𝜑 } ) )
ovmpt3rab1.m ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → 𝑀 = 𝐾 )
ovmpt3rab1.n ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → 𝑁 = 𝐿 )
ovmpt3rab1.p ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( 𝜑𝜓 ) )
ovmpt3rab1.x 𝑥 𝜓
ovmpt3rab1.y 𝑦 𝜓
Assertion ovmpt3rab1 ( ( 𝑋𝑉𝑌𝑊𝐾𝑈 ) → ( 𝑋 𝑂 𝑌 ) = ( 𝑧𝐾 ↦ { 𝑎𝐿𝜓 } ) )

Proof

Step Hyp Ref Expression
1 ovmpt3rab1.o 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑧𝑀 ↦ { 𝑎𝑁𝜑 } ) )
2 ovmpt3rab1.m ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → 𝑀 = 𝐾 )
3 ovmpt3rab1.n ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → 𝑁 = 𝐿 )
4 ovmpt3rab1.p ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( 𝜑𝜓 ) )
5 ovmpt3rab1.x 𝑥 𝜓
6 ovmpt3rab1.y 𝑦 𝜓
7 1 a1i ( ( 𝑋𝑉𝑌𝑊𝐾𝑈 ) → 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑧𝑀 ↦ { 𝑎𝑁𝜑 } ) ) )
8 3 4 rabeqbidv ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → { 𝑎𝑁𝜑 } = { 𝑎𝐿𝜓 } )
9 2 8 mpteq12dv ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( 𝑧𝑀 ↦ { 𝑎𝑁𝜑 } ) = ( 𝑧𝐾 ↦ { 𝑎𝐿𝜓 } ) )
10 9 adantl ( ( ( 𝑋𝑉𝑌𝑊𝐾𝑈 ) ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( 𝑧𝑀 ↦ { 𝑎𝑁𝜑 } ) = ( 𝑧𝐾 ↦ { 𝑎𝐿𝜓 } ) )
11 eqidd ( ( ( 𝑋𝑉𝑌𝑊𝐾𝑈 ) ∧ 𝑥 = 𝑋 ) → V = V )
12 elex ( 𝑋𝑉𝑋 ∈ V )
13 12 3ad2ant1 ( ( 𝑋𝑉𝑌𝑊𝐾𝑈 ) → 𝑋 ∈ V )
14 elex ( 𝑌𝑊𝑌 ∈ V )
15 14 3ad2ant2 ( ( 𝑋𝑉𝑌𝑊𝐾𝑈 ) → 𝑌 ∈ V )
16 mptexg ( 𝐾𝑈 → ( 𝑧𝐾 ↦ { 𝑎𝐿𝜓 } ) ∈ V )
17 16 3ad2ant3 ( ( 𝑋𝑉𝑌𝑊𝐾𝑈 ) → ( 𝑧𝐾 ↦ { 𝑎𝐿𝜓 } ) ∈ V )
18 nfv 𝑥 ( 𝑋𝑉𝑌𝑊𝐾𝑈 )
19 nfv 𝑦 ( 𝑋𝑉𝑌𝑊𝐾𝑈 )
20 nfcv 𝑦 𝑋
21 nfcv 𝑥 𝑌
22 nfcv 𝑥 𝐾
23 nfcv 𝑥 𝐿
24 5 23 nfrabw 𝑥 { 𝑎𝐿𝜓 }
25 22 24 nfmpt 𝑥 ( 𝑧𝐾 ↦ { 𝑎𝐿𝜓 } )
26 nfcv 𝑦 𝐾
27 nfcv 𝑦 𝐿
28 6 27 nfrabw 𝑦 { 𝑎𝐿𝜓 }
29 26 28 nfmpt 𝑦 ( 𝑧𝐾 ↦ { 𝑎𝐿𝜓 } )
30 7 10 11 13 15 17 18 19 20 21 25 29 ovmpodxf ( ( 𝑋𝑉𝑌𝑊𝐾𝑈 ) → ( 𝑋 𝑂 𝑌 ) = ( 𝑧𝐾 ↦ { 𝑎𝐿𝜓 } ) )