Step |
Hyp |
Ref |
Expression |
1 |
|
ovmpt3rab1.o |
⊢ 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑧 ∈ 𝑀 ↦ { 𝑎 ∈ 𝑁 ∣ 𝜑 } ) ) |
2 |
|
ovmpt3rab1.m |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑀 = 𝐾 ) |
3 |
|
ovmpt3rab1.n |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑁 = 𝐿 ) |
4 |
|
ovmpt3rab1.p |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝜑 ↔ 𝜓 ) ) |
5 |
|
ovmpt3rab1.x |
⊢ Ⅎ 𝑥 𝜓 |
6 |
|
ovmpt3rab1.y |
⊢ Ⅎ 𝑦 𝜓 |
7 |
1
|
a1i |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) → 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑧 ∈ 𝑀 ↦ { 𝑎 ∈ 𝑁 ∣ 𝜑 } ) ) ) |
8 |
3 4
|
rabeqbidv |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → { 𝑎 ∈ 𝑁 ∣ 𝜑 } = { 𝑎 ∈ 𝐿 ∣ 𝜓 } ) |
9 |
2 8
|
mpteq12dv |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑧 ∈ 𝑀 ↦ { 𝑎 ∈ 𝑁 ∣ 𝜑 } ) = ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ 𝜓 } ) ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑧 ∈ 𝑀 ↦ { 𝑎 ∈ 𝑁 ∣ 𝜑 } ) = ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ 𝜓 } ) ) |
11 |
|
eqidd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) ∧ 𝑥 = 𝑋 ) → V = V ) |
12 |
|
elex |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ V ) |
13 |
12
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) → 𝑋 ∈ V ) |
14 |
|
elex |
⊢ ( 𝑌 ∈ 𝑊 → 𝑌 ∈ V ) |
15 |
14
|
3ad2ant2 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) → 𝑌 ∈ V ) |
16 |
|
mptexg |
⊢ ( 𝐾 ∈ 𝑈 → ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ 𝜓 } ) ∈ V ) |
17 |
16
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) → ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ 𝜓 } ) ∈ V ) |
18 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) |
19 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) |
20 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑋 |
21 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑌 |
22 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐾 |
23 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐿 |
24 |
5 23
|
nfrabw |
⊢ Ⅎ 𝑥 { 𝑎 ∈ 𝐿 ∣ 𝜓 } |
25 |
22 24
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ 𝜓 } ) |
26 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐾 |
27 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐿 |
28 |
6 27
|
nfrabw |
⊢ Ⅎ 𝑦 { 𝑎 ∈ 𝐿 ∣ 𝜓 } |
29 |
26 28
|
nfmpt |
⊢ Ⅎ 𝑦 ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ 𝜓 } ) |
30 |
7 10 11 13 15 17 18 19 20 21 25 29
|
ovmpodxf |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) → ( 𝑋 𝑂 𝑌 ) = ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ 𝜓 } ) ) |