Step |
Hyp |
Ref |
Expression |
1 |
|
ovmpt3rab1.o |
⊢ 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑧 ∈ 𝑀 ↦ { 𝑎 ∈ 𝑁 ∣ 𝜑 } ) ) |
2 |
|
ovmpt3rab1.m |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑀 = 𝐾 ) |
3 |
|
ovmpt3rab1.n |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑁 = 𝐿 ) |
4 |
|
sbceq1a |
⊢ ( 𝑦 = 𝑌 → ( 𝜑 ↔ [ 𝑌 / 𝑦 ] 𝜑 ) ) |
5 |
|
sbceq1a |
⊢ ( 𝑥 = 𝑋 → ( [ 𝑌 / 𝑦 ] 𝜑 ↔ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 ) ) |
6 |
4 5
|
sylan9bbr |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝜑 ↔ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 ) ) |
7 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 |
8 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑋 |
9 |
|
nfsbc1v |
⊢ Ⅎ 𝑦 [ 𝑌 / 𝑦 ] 𝜑 |
10 |
8 9
|
nfsbcw |
⊢ Ⅎ 𝑦 [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 |
11 |
1 2 3 6 7 10
|
ovmpt3rab1 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) → ( 𝑋 𝑂 𝑌 ) = ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ) ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) ∧ 𝐿 ∈ 𝑇 ) → ( 𝑋 𝑂 𝑌 ) = ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ) ) |
13 |
12
|
dmeqd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) ∧ 𝐿 ∈ 𝑇 ) → dom ( 𝑋 𝑂 𝑌 ) = dom ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ) ) |
14 |
|
rabexg |
⊢ ( 𝐿 ∈ 𝑇 → { 𝑎 ∈ 𝐿 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ∈ V ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) ∧ 𝐿 ∈ 𝑇 ) → { 𝑎 ∈ 𝐿 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ∈ V ) |
16 |
15
|
ralrimivw |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) ∧ 𝐿 ∈ 𝑇 ) → ∀ 𝑧 ∈ 𝐾 { 𝑎 ∈ 𝐿 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ∈ V ) |
17 |
|
dmmptg |
⊢ ( ∀ 𝑧 ∈ 𝐾 { 𝑎 ∈ 𝐿 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ∈ V → dom ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ) = 𝐾 ) |
18 |
16 17
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) ∧ 𝐿 ∈ 𝑇 ) → dom ( 𝑧 ∈ 𝐾 ↦ { 𝑎 ∈ 𝐿 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ) = 𝐾 ) |
19 |
13 18
|
eqtrd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈 ) ∧ 𝐿 ∈ 𝑇 ) → dom ( 𝑋 𝑂 𝑌 ) = 𝐾 ) |