| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovmpt4d.1 | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  𝐶 ) ) | 
						
							| 2 |  | ovmpt4d.2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  𝐶  ∈  𝑉 ) | 
						
							| 3 | 1 | oveqdr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 𝐹 𝑦 )  =  ( 𝑥 ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  𝐶 ) 𝑦 ) ) | 
						
							| 4 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 5 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 6 |  | eqid | ⊢ ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  𝐶 )  =  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  𝐶 ) | 
						
							| 7 | 6 | ovmpt4g | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝐶  ∈  𝑉 )  →  ( 𝑥 ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  𝐶 ) 𝑦 )  =  𝐶 ) | 
						
							| 8 | 4 5 2 7 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  𝐶 ) 𝑦 )  =  𝐶 ) | 
						
							| 9 | 3 8 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 𝐹 𝑦 )  =  𝐶 ) |