| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovmpt4g.3 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) |
| 2 |
|
elisset |
⊢ ( 𝐶 ∈ 𝑉 → ∃ 𝑧 𝑧 = 𝐶 ) |
| 3 |
|
moeq |
⊢ ∃* 𝑧 𝑧 = 𝐶 |
| 4 |
3
|
a1i |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ∃* 𝑧 𝑧 = 𝐶 ) |
| 5 |
|
df-mpo |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } |
| 6 |
1 5
|
eqtri |
⊢ 𝐹 = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } |
| 7 |
4 6
|
ovidi |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 = 𝐶 → ( 𝑥 𝐹 𝑦 ) = 𝑧 ) ) |
| 8 |
|
eqeq2 |
⊢ ( 𝑧 = 𝐶 → ( ( 𝑥 𝐹 𝑦 ) = 𝑧 ↔ ( 𝑥 𝐹 𝑦 ) = 𝐶 ) ) |
| 9 |
7 8
|
mpbidi |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 = 𝐶 → ( 𝑥 𝐹 𝑦 ) = 𝐶 ) ) |
| 10 |
9
|
exlimdv |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑧 𝑧 = 𝐶 → ( 𝑥 𝐹 𝑦 ) = 𝐶 ) ) |
| 11 |
2 10
|
syl5 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐶 ∈ 𝑉 → ( 𝑥 𝐹 𝑦 ) = 𝐶 ) ) |
| 12 |
11
|
3impia |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → ( 𝑥 𝐹 𝑦 ) = 𝐶 ) |